Power generation performance of π-structure thermoelectric device using NaCo2O4 and Mg2Si elements

2013 ◽  
Vol 1490 ◽  
pp. 185-190 ◽  
Author(s):  
Tomoyuki Nakamura ◽  
Kazuya Hatakeyama ◽  
Masahiro Minowa ◽  
Youhiko Mito ◽  
Koya Arai ◽  
...  

ABSTRACTThermoelectric power generation has been attracting attention as a technology for waste heat utilization in which thermal energy is directly converted into electric energy. It is well known that layered cobalt oxide compounds such as NaCo2O4 and Ca3Co4O9 have high thermoelectric properties in p-type oxide semiconductors. However, in most cases, the thermoelectric properties in n-type oxide materials are not as high. Therefore, n-type magnesium silicide (Mg2Si) has been studied as an alternative due to its non-toxicity, environmental friendliness, lightweight property, and comparative abundance compared with other TE systems. In this study, we fabricated π-structure thermoelectric power generation devices using p-type NaCo2O4 elements and n-type Mg2Si elements. The p- and n-type sintering bodies were fabricated by spark plasma sintering (SPS). To reduce the resistance at the interface between elements and electrodes, we processed the surface of the elements before fabricating the devices. The end face of a Mg2Si element was covered with Ni by SPS and that of a NaCo2O4 element was coated with Ag by silver paste and soldering.The thermoelectric device consisted of 18 pairs of p-type and n-type legs connected with Ag electrodes. The cross-sectional and thickness dimensions of the p-type elements were 3.0 mm × 5.0 mm × 7.6 mm (t) and those of the n-type elements were 3.0 mm × 3.0 mm × 7.6 mm (t). The open circuit voltage was 1.9 V and the maximum output power was 1.4 W at a heat source temperature of 873 K and a cooling water temperature of 283 K in air.

2011 ◽  
Vol 1325 ◽  
Author(s):  
Kazuaki Yazawa ◽  
Ali Shakouri

ABSTRACTA recently developed generic model of a thermoelectric power generation system suggests a promising future for cost effective and scalable power generation. The model is based on co-optimizing the thermoelectric module together with the heat sink. Using this model, efficiency at maximum output power is calculated. It is shown that this approaches the Curzon-Ahlborn limit at very large Z values which is consistent with thermodynamic systems with irreversible heat engines. However, this happens only when the thermal resistances of the thermoelectric device with hot and cold heat sinks exactly match. For asymmetrical thermal resistances, the efficiency at maximum output power is different. This is consistent with the very recent results for the thermodynamic engines. Finally, we study the impact of lowering the thermal conductivity of the thermoelectric material or increasing its power factor and how these affect the performance of the thermoelectric power generation system.


Author(s):  
Tong Xing ◽  
Qingfeng Song ◽  
Pengfei Qiu ◽  
Qihao Zhang ◽  
Ming Gu ◽  
...  

GeTe-based materials have a great potential to be used in thermoelectric generators for waste heat recovery due to their excellent thermoelectric performance, but their module research is greatly lagging behind...


2010 ◽  
Vol 74 ◽  
pp. 83-92 ◽  
Author(s):  
Takenobu Kajikawa

Thermoelectric power generation technology has been recognized to contribute to the realization of environment-friendly society all over the world in the future. Present status and future prospects on the thermoelectric power generation technology in Japan are overviewed. The thermoelectric applications for power generation have been mainly considered to be one of the waste heat recovery systems from industrial, private, and transportation sectors in the Japanese energy system. Such activities have been in progress in Japan. Then, several demonstration system tests and feasibility study have been achieved using practical heat sources such as industrial furnaces, motorcycles, solid waste incinerators, and solar thermal systems have been achieved mainly by private companies. Several topics of experimental results on advanced modules based on layered oxides, Heusler alloys, filled Skutterudites for power generation from the view points from environment-friendly and nanostrucuture approach are included. In the future prospects the recent R&D projects of advanced materials for thermoelectric power generation technology and the commercialization of thermoelectric power generation applications are discussed.


Author(s):  
Leon M. Headings ◽  
Shawn Midlam-Mohler ◽  
Gregory N. Washington ◽  
Joseph P. Heremans

While the thermoelectric effects have been known for over 100 years, their traditionally low conversion efficiency for power generation has limited their use to highly specialized applications. With the rapid advancement of thermoelectric materials in recent years, their inherent reliability and power density is being augmented by improvements in efficiency. Recent increases in the figure of merit of materials suitable for operation around 500 °C make them candidates for waste heat recovery, as well as primary power using combustion heaters. The characteristic scalability of thermoelectric generators makes them best suited for low power applications where alternative generators become impractical. However, with the development of thermoelectric device technology in parallel with materials advancements, it may become viable to design thermoelectric generators for auxiliary power in automotive applications. The research presented here represents the initial stages of the development of a thermoelectric power unit (TEPU). While thermoelectric generator technology can be applied to any fuel, this research targets the use of diesel fuel which is readily available for both military and consumer applications and is more easily and safely transported than many alternatives. The use of diesel fuel for a TEPU is enabled by the use of an atomizer technology developed at The Ohio State University Center for Automotive Research. A baseline prototype incorporating this novel diesel fuel atomizer/combustor with conventional thermoelectric materials and heat exchange designs has been constructed and tested. Preliminary data highlights the viability of diesel fuel for thermoelectric power generation as well as the areas which demand further development. This prototype will serve as the baseline for evaluating future designs incorporating advanced materials and novel system designs.


Sign in / Sign up

Export Citation Format

Share Document