Defect Management of High Efficiency Multijunction, Space and Concentrator Solar Cells

2014 ◽  
Vol 1670 ◽  
Author(s):  
Masafumi Yamaguchi ◽  
Nobuaki Kojima ◽  
Kazuma Ikeda ◽  
Yoshio Ohshita

ABSTRACTIII-V compound multi-junction solar cells have high efficiency potential of more than 50% due to wide photo response, while limiting efficiencies of single-junction solar cells are 31-32%. In order to realize high efficiency III-V compound multi-junction solar cells, understanding and controlling imperfections (defects) are very important. This paper reviews fundamentals of defects and defect management for III-V compound materials, single-junction, multi-junction, space and concentrator solar cells.

2020 ◽  
Author(s):  
Masafumi Yamaguchi

The III-V compound solar cells represented by GaAs solar cells have contributed as space and concentrator solar cells and are important as sub-cells for multi-junction solar cells. This chapter reviews progress in III-V compound single-junction solar cells such as GaAs, InP, AlGaAs and InGaP cells. Especially, GaAs solar cells have shown 29.1% under 1-sun, highest ever reported for single-junction solar cells. In addition, analytical results for non-radiative recombination and resistance losses in III-V compound solar cells are shown by considering fundamentals for major losses in III-V compound materials and solar cells. Because the limiting efficiency of single-junction solar cells is 30-32%, multi-junction junction solar cells have been developed and InGaP/GaAs based 3-junction solar cells are widely used in space. Recently, highest efficiencies of 39.1% under 1-sun and 47.2% under concentration have been demonstrated with 6-junction solar cells. This chapter also reviews progress in III-V compound multi-junction solar cells and key issues for realizing high-efficiency multi-junction cells.


2018 ◽  
Author(s):  
Henk Bolink ◽  
Lidon Gil-Escrig ◽  
Pablo P. Boix ◽  
Cristina Momblona ◽  
Jorge Avila ◽  
...  

2013 ◽  
Vol 21 (5) ◽  
pp. 821-826 ◽  
Author(s):  
Simon Hänni ◽  
Grégory Bugnon ◽  
Gaetano Parascandolo ◽  
Mathieu Boccard ◽  
Jordi Escarré ◽  
...  

Nano Energy ◽  
2021 ◽  
pp. 106712
Author(s):  
Jiakai Zhou ◽  
Qian Huang ◽  
Yi Ding ◽  
Guofu Hou ◽  
Ying Zhao

2012 ◽  
Vol 1426 ◽  
pp. 125-130
Author(s):  
Y.W. Tseng ◽  
Y.H. Lin ◽  
H.J. Hsu ◽  
C.H. Hsu ◽  
C.C. Tsai

ABSTRACTIn this work, the development of hydrogenated amorphous silicon oxide (a-SiOx:H) absorber, a-SiOx:H single-junction solar cells and a-SiOx:H/a-Si1-xGex:H tandem solar cells were presented. The oxygen content of the a-SiOx:H materials controlled by changing CO2-to-SiH4 flow ratio had significant influence on its opto-electrical property. As CO2/SiH4 increased from 0 to 2, the bandgap increased from 1.75 to 2.13 eV while the photo-conductivity decreased from 8.25×10-6 to 1.02×10-8 S/cm. Photo-response of over 105 can be obtained as the bandgap was approximately 1.90 eV. The performance of single-junction solar cells revealed a better efficiency can be obtained as the absorber bandgap was in the range of 1.83 to 1.90 eV. Further increase of the absorber bandgap may lead to the increase in bulk defect density which deteriorated the cell efficiency. Finally, a-SiOx:H/a-Si1-xGex:H tandem solar cell was fabricated with the absorber bandgap of 1.90 eV in the top cell. By matching the current between the component cells, the tandem cell efficiency of 7.38% has been achieved.


2009 ◽  
Vol 1153 ◽  
Author(s):  
Guozhen Yue ◽  
Laura Sivec ◽  
Baojie Yan ◽  
Jeff Yang ◽  
Subhendu Guha

AbstractWe report our recent progress on nc-Si:H single-junction and a-Si:H/nc-Si:H/nc-Si:H triple-junction cells made by a modified very-high-frequency (MVHF) technique at deposition rates of 10-15 Å/s. First, we studied the effect of substrate texture on the nc-Si:H single-junction solar cell performance. We found that nc-Si:H single-junction cells made on bare stainless steel (SS) have a good fill factor (FF) of ˜0.73, while it decreased to ˜0.65 when the cells were deposited on textured Ag/ZnO back reflectors. The open-circuit voltage (Voc) also decreased. We used dark current-voltage (J-V), Raman, and X-ray diffraction (XRD) measurements to characterize the material properties. The dark J-V measurement showed that the reverse saturated current was increased by a factor of ˜30 when a textured Ag/ZnO back reflector was used. Raman results revealed that the nc-Si:H intrinsic layers in the two solar cells have similar crystallinity. However, they showed a different crystallographic orientation as indicated in XRD patterns. The material grown on Ag/ZnO has more random orientation than that on SS. These experimental results suggested that the deterioration of FF in nc-Si:H solar cells on textured Ag/ZnO was caused by poor nc-Si:H quality. Based on this study, we have improved our Ag/ZnO back reflector and the quality of nc-Si:H component cells and achieved an initial and stable active-area efficiencies of 13.4% and 12.1%, respectively, in an a-Si:H/nc-Si:H/nc-Si:H triple-junction cell.


1998 ◽  
Vol 551 ◽  
Author(s):  
R.W. Hoffman ◽  
N.S. Fatemi ◽  
M.A. Stan ◽  
P. Jenkins ◽  
V.G. Weizer ◽  
...  

AbstractThe demand for spacecraft power has dramatically increased recently. Higher efficiency, multi-junction devices are being developed to satisfy the demand. The multi-junction cells presently being developed and flown do not employ optimized bandgap combinations for ultimate efficiency due to the traditional constraint of maintaining lattice match to available substrates. We are developing a new approach to optimize the bandgap combination and improve the device performance that is based on relaxing the condition of maintaining lattice match to the substrate. We have designed cells based on this approach, fabricated single junction components cells and tested their performance. We will report on our progress toward achieving beginning-of-life AMO multi-junction device conversion efficiencies above 30%.


Sign in / Sign up

Export Citation Format

Share Document