Passivating contacts for high-efficiency silicon-based solar cells: from single-junction to tandem architecture

Nano Energy ◽  
2021 ◽  
pp. 106712
Author(s):  
Jiakai Zhou ◽  
Qian Huang ◽  
Yi Ding ◽  
Guofu Hou ◽  
Ying Zhao
2018 ◽  
Author(s):  
Henk Bolink ◽  
Lidon Gil-Escrig ◽  
Pablo P. Boix ◽  
Cristina Momblona ◽  
Jorge Avila ◽  
...  

Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 964 ◽  
Author(s):  
Yue Zhang ◽  
Haiming Zhang ◽  
Xiaohui Zhang ◽  
Lijuan Wei ◽  
Biao Zhang ◽  
...  

Organic–inorganic hybrid perovskite solar cells (PSCs) have made immense progress in recent years, owing to outstanding optoelectronic properties of perovskite materials, such as high extinction coefficient, carrier mobility, and low exciton binding energy. Since the first appearance in 2009, the efficiency of PSCs has reached 23.3%. This has made them the most promising rival to silicon-based solar cells. However, there are still several issues to resolve to promote PSCs’ outdoor applications. In this review, three crucial aspects of PSCs, including high efficiency, environmental stability, and low-cost of PSCs, are described in detail. Recent in-depth studies on different aspects are also discussed for better understanding of these issues and possible solutions.


2020 ◽  
Author(s):  
Masafumi Yamaguchi

The III-V compound solar cells represented by GaAs solar cells have contributed as space and concentrator solar cells and are important as sub-cells for multi-junction solar cells. This chapter reviews progress in III-V compound single-junction solar cells such as GaAs, InP, AlGaAs and InGaP cells. Especially, GaAs solar cells have shown 29.1% under 1-sun, highest ever reported for single-junction solar cells. In addition, analytical results for non-radiative recombination and resistance losses in III-V compound solar cells are shown by considering fundamentals for major losses in III-V compound materials and solar cells. Because the limiting efficiency of single-junction solar cells is 30-32%, multi-junction junction solar cells have been developed and InGaP/GaAs based 3-junction solar cells are widely used in space. Recently, highest efficiencies of 39.1% under 1-sun and 47.2% under concentration have been demonstrated with 6-junction solar cells. This chapter also reviews progress in III-V compound multi-junction solar cells and key issues for realizing high-efficiency multi-junction cells.


2013 ◽  
Vol 21 (5) ◽  
pp. 821-826 ◽  
Author(s):  
Simon Hänni ◽  
Grégory Bugnon ◽  
Gaetano Parascandolo ◽  
Mathieu Boccard ◽  
Jordi Escarré ◽  
...  

2014 ◽  
Vol 16 (29) ◽  
pp. 15400-15410 ◽  
Author(s):  
Yiming Liu ◽  
Yun Sun ◽  
Wei Liu ◽  
Jianghong Yao

A novel high-efficiency c-Si heterojunction solar cell with using compound hetero-materials is proposed and denominated HCT (heterojunction with a compound thin-layer).


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Umer Mehmood ◽  
Saleem-ur Rahman ◽  
Khalil Harrabi ◽  
Ibnelwaleed A. Hussein ◽  
B. V. S. Reddy

Solar energy is an abundant and accessible source of renewable energy available on earth, and many types of photovoltaic (PV) devices like organic, inorganic, and hybrid cells have been developed to harness the energy. PV cells directly convert solar radiation into electricity without affecting the environment. Although silicon based solar cells (inorganic cells) are widely used because of their high efficiency, they are rigid and manufacturing costs are high. Researchers have focused on organic solar cells to overcome these disadvantages. DSSCs comprise a sensitized semiconductor (photoelectrode) and a catalytic electrode (counter electrode) with an electrolyte sandwiched between them and their efficiency depends on many factors. The maximum electrical conversion efficiency of DSSCs attained so far is 11.1%, which is still low for commercial applications. This review examines the working principle, factors affecting the efficiency, and key challenges facing DSSCs.


2009 ◽  
Vol 1153 ◽  
Author(s):  
Guozhen Yue ◽  
Laura Sivec ◽  
Baojie Yan ◽  
Jeff Yang ◽  
Subhendu Guha

AbstractWe report our recent progress on nc-Si:H single-junction and a-Si:H/nc-Si:H/nc-Si:H triple-junction cells made by a modified very-high-frequency (MVHF) technique at deposition rates of 10-15 Å/s. First, we studied the effect of substrate texture on the nc-Si:H single-junction solar cell performance. We found that nc-Si:H single-junction cells made on bare stainless steel (SS) have a good fill factor (FF) of ˜0.73, while it decreased to ˜0.65 when the cells were deposited on textured Ag/ZnO back reflectors. The open-circuit voltage (Voc) also decreased. We used dark current-voltage (J-V), Raman, and X-ray diffraction (XRD) measurements to characterize the material properties. The dark J-V measurement showed that the reverse saturated current was increased by a factor of ˜30 when a textured Ag/ZnO back reflector was used. Raman results revealed that the nc-Si:H intrinsic layers in the two solar cells have similar crystallinity. However, they showed a different crystallographic orientation as indicated in XRD patterns. The material grown on Ag/ZnO has more random orientation than that on SS. These experimental results suggested that the deterioration of FF in nc-Si:H solar cells on textured Ag/ZnO was caused by poor nc-Si:H quality. Based on this study, we have improved our Ag/ZnO back reflector and the quality of nc-Si:H component cells and achieved an initial and stable active-area efficiencies of 13.4% and 12.1%, respectively, in an a-Si:H/nc-Si:H/nc-Si:H triple-junction cell.


1998 ◽  
Vol 551 ◽  
Author(s):  
R.W. Hoffman ◽  
N.S. Fatemi ◽  
M.A. Stan ◽  
P. Jenkins ◽  
V.G. Weizer ◽  
...  

AbstractThe demand for spacecraft power has dramatically increased recently. Higher efficiency, multi-junction devices are being developed to satisfy the demand. The multi-junction cells presently being developed and flown do not employ optimized bandgap combinations for ultimate efficiency due to the traditional constraint of maintaining lattice match to available substrates. We are developing a new approach to optimize the bandgap combination and improve the device performance that is based on relaxing the condition of maintaining lattice match to the substrate. We have designed cells based on this approach, fabricated single junction components cells and tested their performance. We will report on our progress toward achieving beginning-of-life AMO multi-junction device conversion efficiencies above 30%.


Sign in / Sign up

Export Citation Format

Share Document