Nepheline Crystallization in High-Alumina High-Level Waste Glass

2015 ◽  
Vol 1744 ◽  
pp. 85-91 ◽  
Author(s):  
José Marcial ◽  
John McCloy ◽  
Owen Neill

ABSTRACTThe understanding of the crystallization of aluminosilicate phases in nuclear waste glasses is a major challenge for nuclear waste vitrification. Robust studies on the compositional dependence of nepheline formation have focused on large compositional spaces with hundreds of glass compositions. However, there are clear benefits to obtaining complete descriptions of the conditions under which crystallization occurs for specific glasses, adding to the understanding of nucleation and growth kinetics and interfacial conditions. The focus of this work was the investigation of the microstructure and composition of one simulant high-level nuclear waste glass crystallized under isothermal and continuous cooling schedules. It was observed that conditions of low undercooling, nepheline was the most abundant aluminosilicate phase. Further undercooling led to the formation of additional phases such as calcium phosphate. Nepheline composition was independent of thermal history.

1999 ◽  
Vol 556 ◽  
Author(s):  
H. Gan ◽  
A. C. Buechele ◽  
C.-W. Kim ◽  
X. Huang ◽  
R. K. Mohr ◽  
...  

AbstractInconel-690, a Cr-Ni-Fe-based “superalloy,” has become the material of choice for electrodes in joule-heated waste glass melters and is currently employed in the high-level nuclear waste vitrification systems at West Valley and DWPF, as well as in GTS Duratek's privatized M-Area mixed waste vitrification facility at Savannah River. Future applications of joule-heated vitrification technologies will necessitate an assessment of the limits of performance of this material under more demanding conditions than have been studied previously. In this work, Inconel 690 electrodes were tested in several simulated sodium-rich aluminosilicate waste glasses in wide ranges of AC current density, electrical waveform, temperature, and glass composition.


1993 ◽  
Vol 333 ◽  
Author(s):  
Shi-Ben Xing ◽  
Isabelle S. Muller ◽  
Ian L. Pegg

ABSTRACTIn our previous studies on the optimization of glass compositions for high-level nuclear waste vitrification it was found that, over certain composition ranges, PCT leachate concentrations increased dramatically with very small changes in glass composition. The large differences that are observed between the leachate pH values for the “durable” and the “less-durable” glasses is one possible cause for this strongly non-linear glass composition effect; conversely, the pH difference may be merely another symptom. In this study, four simulated nuclear waste glasses (two of the less-durable and two of the durable types), were leached in both zwitterionic and inorganic buffer solutions, at fixed pH-values in the ranges of 7 to 12. The very different leaching behaviors of the two types of glasses persisted and, furthermore, different pH-dependence was found despite their very similar glass composition. This study suggests that the leachate pH difference observed between the less-durable and the durable glasses under uncontrolled pH conditions is not the major cause of the large difference of leaching behavior between those glasses. The normalized release ratios of soluble components (B, Li, Na) to Si show significant differences for the two types of glasses.


2017 ◽  
Author(s):  
Renee Russell ◽  
Yeong-Shyung Chou ◽  
Benjamin McCarthy ◽  
Lori Darnell ◽  
Vivianaluxa Gervasio ◽  
...  

2020 ◽  
Vol 11 (4) ◽  
pp. 641-648
Author(s):  
Cory L. Trivelpiece ◽  
Thomas B. Edwards ◽  
Fabienne C. Johnson ◽  
Kimberly P. Crapse ◽  
Kevin M. Fox

2019 ◽  
Vol 9 (12) ◽  
pp. 2437 ◽  
Author(s):  
Sebastian Wegel ◽  
Victoria Czempinski ◽  
Pao-Yu Oei ◽  
Ben Wealer

The nuclear industry in the United States of America has accumulated about 70,000 metric tons of high-level nuclear waste over the past decades; at present, this waste is temporarily stored close to the nuclear power plants. The industry and the Department of Energy are now facing two related challenges: (i) will a permanent geological repository, e.g., Yucca Mountain, become available in the future, and if yes, when?; (ii) should the high-level waste be transported to interim storage facilities in the meantime, which may be safer and more cost economic? This paper presents a mathematical transportation model that evaluates the economic challenges and costs associated with different scenarios regarding the opening of a long-term geological repository. The model results suggest that any further delay in opening a long-term storage increases cost and consolidated interim storage facilities should be built now. We show that Yucca Mountain’s capacity is insufficient and additional storage is necessary. A sensitivity analysis for the reprocessing of high-level waste finds this uneconomic in all cases. This paper thus emphasizes the urgency of dealing with the high-level nuclear waste and informs the debate between the nuclear industry and policymakers on the basis of objective data and quantitative analysis.


1996 ◽  
Vol 465 ◽  
Author(s):  
J. G. Reynolds ◽  
P. Hrma

ABSTRACTThe kinetics of spinel crystallization from a molten high-iron simulated high-level nuclear waste glass was studied using isothermal heat treatments. Optical microscopy with image analysis was used to measure volume fraction of spinel as a function of heat treatment time and temperature. The Johnson-Mehl-Avrami equation was fitted to data to determine kinetic coefficients for spinel crystallization. The liquidus temperature and Avrami number are TL = 1337K and n = 1.5.


Sign in / Sign up

Export Citation Format

Share Document