Corrosion of inconel-690 electrodes in waste glass melts

1999 ◽  
Vol 556 ◽  
Author(s):  
H. Gan ◽  
A. C. Buechele ◽  
C.-W. Kim ◽  
X. Huang ◽  
R. K. Mohr ◽  
...  

AbstractInconel-690, a Cr-Ni-Fe-based “superalloy,” has become the material of choice for electrodes in joule-heated waste glass melters and is currently employed in the high-level nuclear waste vitrification systems at West Valley and DWPF, as well as in GTS Duratek's privatized M-Area mixed waste vitrification facility at Savannah River. Future applications of joule-heated vitrification technologies will necessitate an assessment of the limits of performance of this material under more demanding conditions than have been studied previously. In this work, Inconel 690 electrodes were tested in several simulated sodium-rich aluminosilicate waste glasses in wide ranges of AC current density, electrical waveform, temperature, and glass composition.

2015 ◽  
Vol 1744 ◽  
pp. 85-91 ◽  
Author(s):  
José Marcial ◽  
John McCloy ◽  
Owen Neill

ABSTRACTThe understanding of the crystallization of aluminosilicate phases in nuclear waste glasses is a major challenge for nuclear waste vitrification. Robust studies on the compositional dependence of nepheline formation have focused on large compositional spaces with hundreds of glass compositions. However, there are clear benefits to obtaining complete descriptions of the conditions under which crystallization occurs for specific glasses, adding to the understanding of nucleation and growth kinetics and interfacial conditions. The focus of this work was the investigation of the microstructure and composition of one simulant high-level nuclear waste glass crystallized under isothermal and continuous cooling schedules. It was observed that conditions of low undercooling, nepheline was the most abundant aluminosilicate phase. Further undercooling led to the formation of additional phases such as calcium phosphate. Nepheline composition was independent of thermal history.


1993 ◽  
Vol 333 ◽  
Author(s):  
Shi-Ben Xing ◽  
Isabelle S. Muller ◽  
Ian L. Pegg

ABSTRACTIn our previous studies on the optimization of glass compositions for high-level nuclear waste vitrification it was found that, over certain composition ranges, PCT leachate concentrations increased dramatically with very small changes in glass composition. The large differences that are observed between the leachate pH values for the “durable” and the “less-durable” glasses is one possible cause for this strongly non-linear glass composition effect; conversely, the pH difference may be merely another symptom. In this study, four simulated nuclear waste glasses (two of the less-durable and two of the durable types), were leached in both zwitterionic and inorganic buffer solutions, at fixed pH-values in the ranges of 7 to 12. The very different leaching behaviors of the two types of glasses persisted and, furthermore, different pH-dependence was found despite their very similar glass composition. This study suggests that the leachate pH difference observed between the less-durable and the durable glasses under uncontrolled pH conditions is not the major cause of the large difference of leaching behavior between those glasses. The normalized release ratios of soluble components (B, Li, Na) to Si show significant differences for the two types of glasses.


2020 ◽  
Vol 11 (4) ◽  
pp. 641-648
Author(s):  
Cory L. Trivelpiece ◽  
Thomas B. Edwards ◽  
Fabienne C. Johnson ◽  
Kimberly P. Crapse ◽  
Kevin M. Fox

MRS Bulletin ◽  
1987 ◽  
Vol 12 (5) ◽  
pp. 61-65 ◽  
Author(s):  
M.J. Plodinec

At the Savannah River Plant (SRP), construction of what will be the world's largest solidification facility for nuclear waste has been under way since 1983. Beginning in 1990, the nearly 100 million liters of liquid high-level nuclear waste now stored on the site will be made into a durable borosilicate glass in this Defense Waste Processing Facility (DWPF).In developing a slurry-fed melting process for the DWPF, we made advances in understanding both glass processing and glass durability. This article focuses on what we learned and what further advances are likely to be made.Generally speaking, the goal of any glass technologist is to make a good glass and to make it well. In the glass industry a good product is whatever people will buy. To make it well means, above all, to make the product as economically as possible. Thus, the commercial glass technologist will control the composition of the melter feed material very closely to ensure that only the components necessary for glass performance are included, and in the least expensive form possible. The commercial glass technologist may also tolerate low yields or specify several stages of post-melt processing if it is necessary to produce a product to demanding specifications.To the nuclear waste glass technologist, however, a good product is one which will be stable in geologic environments for millions of years.


1989 ◽  
Vol 176 ◽  
Author(s):  
Henry D. Schreiber ◽  
Charlotte W. Schreiber ◽  
Margaret W. Riethmiller ◽  
J. Sloan Downey

ABSTRACTThe oxidation-reduction equilibria of selected multivalent elements in an alkali borosilicate glass melt (Savannah River Laboratory frit #131) were measured as a function of the imposed oxygen fugacity over the temperature range from 950°C to 1350°C. Redox constraints on the processing of high-level nuclear waste into the glass melt require that the prevailing oxygen fugacity be about 10−5 to 10−12 Zatm at 950°C, about 10−2 to 10−9 atm at 1150°C, and about 100 to 10−7 atm at 1350°C. Such conditions circumvent foaming under oxidizing situations and metal/sulfide precipitation if the system becomes too reducing. The defined oxygen fugacity ranges correspond to the previously prescribed range of 0.1 to 0.5 for the [Fe2+]/[Fe3+] ratio in the resulting glass, independent of the processing temperature from 950°C to 1350°C.


1978 ◽  
Author(s):  
G.J. McCarthy ◽  
B.E. Scheetz ◽  
S. Komarneni ◽  
D.K. Smith

2022 ◽  
Author(s):  
Adam J Fisher ◽  
Hao Ding ◽  
Prashant Rajbhandari ◽  
Brant Walkley ◽  
Lewis R Blackburn ◽  
...  

Within the context of the UK’s radioactive waste vitrification programme, which utilises a lithium-sodium borosilicate glass modified with CaO and ZnO to immobilise high level nuclear waste, an investigation was...


Sign in / Sign up

Export Citation Format

Share Document