Si Whisker Growth by Hydrogen Radical using Hot Filament CVD Reactor

2007 ◽  
Vol 1018 ◽  
Author(s):  
Hiroshi Nagayoshi ◽  
Suzuka Nishimura ◽  
Kazutaka Terashima ◽  
Nobuo Matsumoto ◽  
Alexander G. Ulyashin

AbstractThis paper describes the growth mechanism of silicon whisker on a silicon substrate using hot filament CVD reactor. Only hydrogen is used as source gas. The particle layer could be obtained at high filament current condition under hydrogen ambient. XPS analysis result suggests that the particle is composed of tungsten silicide. The deposition condition of the particle layer is much depended on the substrate size, surface condition and the distance between the substrate and the filament. The experimental results suggest that the silicon hydride, which generated at the silicon surface by hydrogen radical etching, react with the tungsten filament material around the filament, depositing on the silicon substrate. The silicon surface is etched by hydrogen radical and its resultant surface morphology is much depended on the particle deposition pattern. Many silicon whiskers, which diameter is varied from 10 to 50 nm, are observed on the textured silicon surface when the residence time of the source gas in the reactor is long. Each whisker has a silicon particle on their tip. The silicon hydride generated by the hydrogen radical etching is much absorbed to the silicide particle when the source gas residence time is long, enabling the silicon whisker growth from the particle. The results suggest that nm size whisker structure is much stable compare to the bulk silicon against etching reaction.

2005 ◽  
Vol 891 ◽  
Author(s):  
Hiroshi Nagayoshi ◽  
Hiroaki Sato ◽  
Suzuka Nishimura ◽  
Kazutaka Terashima

ABSTRACTThis paper describes the surface texturing mechanism on crystalline Si using hydrogen radicals generated by a tungsten hot filament. Inverted pyramid or labyrinthV groove structure could be obtained by particle deposition before etching. Mesh like tungsten particle layer, works as an etching mask against hydrogen radical, was obtained when silicon substrate was used. On the other hand, tungstem particles were not deposited as mesh like pattern when SiO2/Si substrate was used. The results suggest that evaporation of silicon hydrides from the silicon surface by hydrogen radical etching causes the mesh like pattern deposition of tungsten particles. Increase of filament current enables short time texturing process of less than 1 minute.


2008 ◽  
Vol 47 (6) ◽  
pp. 4807-4809 ◽  
Author(s):  
Hiroshi Nagayoshi ◽  
Heidi Nordmark ◽  
Randi Holmestad ◽  
Nobuo Matsumoto ◽  
Suzuka Nishimura ◽  
...  

2007 ◽  
Vol 16 (3) ◽  
pp. 609-615 ◽  
Author(s):  
S. Konoplyuk ◽  
T. Abe ◽  
T. Takagi ◽  
T. Uchimoto

2016 ◽  
Vol 39 ◽  
pp. 89-95 ◽  
Author(s):  
Anatoly Druzhinin ◽  
Valery Yerokhov ◽  
Stepan Nichkalo ◽  
Yevhen Berezhanskyi

The paper deals with obtaining of textured silicon surfaces by chemical etching. As a result of experiments based on the modification and optimization of obtaining a textured silicon, several methods of chemical texturing of the crystalline silicon surface were developed. It was shown that modified isotropic and anisotropic etching methods are applicable to create a microrelief on the surface of silicon substrate. These methods in addition to their high conversion efficiency can be used for both mono- and multicrystalline silicon which would ensure their industrial use.


Author(s):  
Alberto Argoitia ◽  
Christopher S. Kovach ◽  
John C. Angus

2007 ◽  
pp. 92-93
Author(s):  
C. L Aardahl ◽  
J. W. Rogers

2019 ◽  
Vol 19 (2) ◽  
pp. 672-677 ◽  
Author(s):  
Raju Ahmed ◽  
Anwar Siddique ◽  
Jonathan Anderson ◽  
Chris Engdahl ◽  
Mark Holtz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document