Level Spectrum of a Single Gated Arsenic Donor in a Three Terminal Geometry

2008 ◽  
Vol 1117 ◽  
Author(s):  
Gabriel P. Lansbergen ◽  
Rajib Rahman ◽  
Cameron J. Wellard ◽  
Jaap Caro ◽  
Insoo Woo ◽  
...  

AbstractState of the art CMOS devices have been scaled to such dimensions that we need take atomistic approach to understand their operation for nano-electronics. From a bottoms-up perspective, the smallest functional element within a nano-device would be a single (dopant) atom itself. Control and understanding of the eigenenergies and wavefunctions of a single dopant in Si is a key ingredient for device technology beyond-CMOS like quantum-information processing. Here, we will discuss the eigenlevels of a single As donor in a three terminal configuration. The donor is incorporated in the channel of prototype transistors called FinFETs. The measured eigenlevels are shown to consist of levels associated with the donors Coulomb potential, levels associated with a triangular well at the gate interface and hybridized combinations of the two. The theoretical framework in which we describe this system (NEMO-3D) is based on a tight-binding approximation.

2008 ◽  
Vol 1067 ◽  
Author(s):  
Gabriel Lansbergen ◽  
Rajib Rahman ◽  
Cameron Wellard ◽  
Jaap Caro ◽  
Nadine Collaert ◽  
...  

ABSTRACTCurrent semiconductor devices have been scaled to such dimensions that we need take an atomistic approach to understand their characteristics. The atomistic nature of these devices provides us with a tool to study the physics of very small ensembles of dopants right up to the limit of a single atom. Control and understanding of a dopants wavefunction and its coupling to the environment in a nanostructure could proof a key ingredient for device technology beyond-CMOS. Here, we will discuss the eigenlevels and transport characteristics a single gated As donor. The donor is incorporated in the channel of wrap-around gate transistors (FinFETs). The measured level spectrum is shown to consist of levels associated with the donors Coulomb potential, levels associated with a triangular well at the gate interface and hybridized combinations of the two. The level spectrum of this system can be well described by a NEMO-3D model, which is based on a numerical tight-binding approximation.


Cryptography ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 14
Author(s):  
Aysajan Abidin

As RFID technology is being widely used in access control systems to identify and track both objects and people, relay attacks on RFID systems continue to pose serious threats to security. To mitigate relay attacks, distance bounding protocols can be used. Until recently, all distance bounding protocols were based on classical cryptography and communication techniques. In this paper, we take a closer look at a recently proposed protocol by Jannati and Ardeshir-Larijani [Quantum Information Processing 2016, 18] to detect relay attacks using qubits. We first observe that the protocol has a weakness which allows an adversary to mount a successful attack on the protocol. We then propose a countermeasure to restore security and compare the fixed protocol with the state of the art.


2001 ◽  
Author(s):  
David P. DiVincenzo ◽  
Charles H. Bennett

2011 ◽  
Author(s):  
David G. Cory ◽  
Chandrasekhar Ramanathan ◽  
Raymond Laflamme ◽  
Joseph V. Emerson ◽  
Jonathan Baugh

Sign in / Sign up

Export Citation Format

Share Document