Spectral Control of Thermal Radiation by Metallic Surface Relief Gratings

2009 ◽  
Vol 1162 ◽  
Author(s):  
Hitoshi Sai ◽  
Yoshiaki Kanamori ◽  
Kengo Watanabe ◽  
Hiroo Yugami

AbstractThe microcavity effect of two-dimensional W surface-relief gratings has been investigated by means of the finite-difference time-domain simulation. The peak structure of the spectral emissivity of W gratings with a number of microcavities is in good agreement with the spectral features of a single microcavity. This result shows that the emissivity enhancement by W gratings with microcavities is mainly attributable to the microcavity effect that arises from each microcavity. It is that the spectral emissivity can be controlled by a combination of several microcavities with different parameters, and that not only a rectangular but a cylindrical microcavity also shows the microcavity effect according to its cavity modes.

2016 ◽  
Vol 34 (1) ◽  
pp. 68 ◽  
Author(s):  
Cinthya Rivas ◽  
Manuel E. Solano ◽  
Rodolfo Rodríguez ◽  
Peter B. Monk ◽  
Akhlesh Lakhtakia

2015 ◽  
Vol 9 (2) ◽  
pp. 275-280 ◽  
Author(s):  
Hamed Armand ◽  
M. Dashti Ardakani

A fully two-dimensional theoretical study of the electromagnetic wave propagation through Metal–Liquid Crystal–Metal (M–LC–M) waveguide structure is presented. Dispersion relations corresponding to both symmetric and antisymmetric-coupled surface plasmons polaritons modes in M–LC–M structure are derived and numerically solved. The effects of LC tilt angles on the effective refractive index and propagation length are proposed. The analytical method is in good agreement with those obtained from finite-difference time-domain simulation. The obtained analytic formula can be used as an efficient element in designing tunable ultrahigh nanoscale integrated plasmonic devices.


2002 ◽  
Vol 722 ◽  
Author(s):  
Mehmet Bayindir ◽  
E. Ozbay

AbstractWe investigate the localized coupled-cavity modes in two-dimensional dielectric photonic crystals. The transmission, phase, and delay time characteristics of the various coupled-cavity structures are measured and calculated. We observed waveguiding through the coupled cavities, splitting of electromagnetic waves in waveguide ports, and switching effect in such structures. The corresponding field patterns and the transmission spectra are obtained from the finite-difference-time-domain (FDTD) simulations. We also develop a theory based on the classical wave analog of the tight-binding (TB) approximation in solid state physics. Experimental results are in good agreement with the FDTD simulations and predictions of the TB approximation.


Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 187
Author(s):  
Tianshun Li ◽  
Renxian Gao ◽  
Xiaolong Zhang ◽  
Yongjun Zhang

Changing the morphology of noble metal nanoparticles and polarization dependence of nanoparticles with different morphologies is an important part of further research on surface plasma enhancement. Therefore, we used the method based on Matlab simulation to provide a simple and effective method for preparing the morphologies of Au nanoparticles with different morphologies, and prepared the structure of Au nanoparticles with good uniformity and different morphologies by oblique angle deposition (OAD) technology. The change of the surface morphology of nanoparticles from spherical to square to diamond can be effectively controlled by changing the deposition angle. The finite difference time domain (FDTD) method was used to simulate the electromagnetic fields of Au nanoparticles with different morphologies to explore the polarization dependence of nanoparticles with different shapes, which was in good agreement with Raman spectrum.


Sign in / Sign up

Export Citation Format

Share Document