An Analysis of Waste Package Behavior for High-Level Waste

1982 ◽  
Vol 15 ◽  
Author(s):  
Margaret S. Chu ◽  
James E. Campbell ◽  
Stephen E. Stuckwisch ◽  
Krishan K. Wahi ◽  
Malcolm D. Siegel

The Environmental Protection Agency (EPA) has issued a draft standard (40CFR191) [1] which specifies permissible limits for radionuclide releases from a high-level waste repository to the accessible environment. The U. S. Nuclear Regulatory Commission (NRC) has published a proposed rule (10CFR60) [2] which contains technical criteria for geologic disposal of high-level waste to facilitate compliance with the EPA Draft Standard. The three main numerical criteria specified in 10CFR60 are:

1984 ◽  
Vol 44 ◽  
Author(s):  
M. J. Steindler ◽  
W. B. Seefeldt

Some nuclear waste is destined for disposal in deep geological formations. The disposal system for wastes from commercial nuclear activities, and perhaps also for high-level wastes from defense-related activities, is to be designed and operated by the Department of Energy (DOE) and licensed by the Nuclear Regulatory Commission (NRC). The Nuclear Waste Policy Act [1] outlines some of the procedures and schedules that are to be followed by DOE in carrying out its assignment in the disposal of high-level nuclear waste (HLW). The regulations of the NRC that deal with HLW [2] are only partly in place, and amendments (e.g., related to the unsaturated zone) are yet to be approved and issued. The Environmental Protection Agency (EPA) has issued only draft versions of the regulations pertaining to HLW disposal [3], but key features of these drafts are at present in adequate agreement with NRC documents. On the basis of the trends that have become evident in the last few years, the DOE will be required to substantiate performance predictions for all pertinent aspects of a repository, especially the performance of the engineered waste package. The basis for demonstrating that the waste package performance in the repository will be in concert with the requirements is data on the waste package materials. These key materials data must clearly be highly reliable, and DOE will be required to assure this reliability. This paper addresses the organization and functions that have been assembled to aid in establishing the quality of materials data that are important in the licensing of a waste repository.


1986 ◽  
Vol 84 ◽  
Author(s):  
T.C. Johnson ◽  
K.C. Chang ◽  
T.L. Jungling ◽  
L.S. Person ◽  
C.H. Peterson ◽  
...  

AbstractPrograms intended to provide supporting information for the high-level radioactive waste (HLW) repository program must consider the licensing requirements and the technical issues involved with extrapolation of short-term test data to periods of up to 10,000 years. The licensing requirements of the Nuclear Regulatory Commission (NRC), and the issues the NRC staff considers important for the development of predictive methods, are described. Because performance predictions of the geologic repository and particular components of the waste package must largely be based upon inference, a reasonable assurance, on the basis of the record before the Commission, is the general standard that will be required.


1990 ◽  
Vol 212 ◽  
Author(s):  
Charles G. Interrante ◽  
Carla A. Messina ◽  
Anna C. Fraker

ABSTRACTThe work reported here is part of a program conducted by the Nuclear Regulatory Commission on the efficacy of proposed plans for radionuclide containment for long-term storage of high-level nuclear waste (HLW). An important element of that program is the review and evaluation of available literature on components of a waste package. A review process and a database have been developed and tailored to provide information quickly to an individual who has a question about a particular material or component of a waste package. The database is uniquely suited to serve as a guide to indicate special areas where data and information needs exist on questions related to radionuclide containment. Additions to the database are made as information becomes available, and this source is as current as the published literature. A description of the review process and the database is given.


1986 ◽  
Vol 84 ◽  
Author(s):  
R. A. Van Konynenburg ◽  
C. F. Smith ◽  
H. W. Culham ◽  
H. D. Smith

AbstractCarbon-14 is produced naturally by cosmic ray neutrons in the upper atmosphere. It is also produced in nuclear reactors, in amounts much smaller than the global inventory. About one-third of this is released directly to the atmosphere, and the other two-thirds remains in the spent fuel. Both the Environmental Protection Agency and the Nuclear Regulatory Commission have established limits on release of the 14C in spent fuel. This is of particular concern for the proposed repository in tuff, because of the unsaturated conditions and the consequent possibility of gaseous tansport of 14C as CO2Existing measurements and calculations of the 14C inventory in spent fuel are reviewed. The physical distribution and Wemical forms of the 14C are discussed. Available data on the release of 14C from spent fuel in aqueous solutions and in gaseous environments of air, nitrogen, and helium are reviewed. Projected N behavior in a tuff repository is described. It is concluded that 14C release measurements from spent fuel into moist air at temperatures both above and below the in situ boiling point of water as well as detailed transport calculations for the tuff geological environment will be needed to determine whether the IOCFR60 and 40CFR191 requirements can be met.


1981 ◽  
Vol 6 ◽  
Author(s):  
F. Robert Cook

ABSTRACTThis paper describes the materials related activities of the Nuclear Regulatory Commission's (NRC's) staff in the area of high-level waste licensing of a geologic repository for nuclear waste. It frames these activities in the context of existing draft regulations for high-level waste disposal.


1995 ◽  
Vol 412 ◽  
Author(s):  
C. Oda ◽  
H. Yoshikawa ◽  
M. Yui

AbstractPalladium solubility was measured in a dilute aqueous solution at room temperature in the pH range from 3 to 13 under anaerobic conditions. Crystalline Pd metal was clearly visible and the concentration of palladium in solution decreased gradually with aging time. The palladium concentrations in solution were less than 9.4×10-10M in the pH range from 4 to 10 and increased to 10-7M in the pH range greater than 10. This study suggests that palladium concentrations in certain high-level waste repository environments may be limited by Pd metal and may be less than 10-9M.


Sign in / Sign up

Export Citation Format

Share Document