The Influence of Grain Boundary Structure on Strain-Induced Grain Growth During Superplastic Deformation

1990 ◽  
Vol 196 ◽  
Author(s):  
H. J. Frost ◽  
R. Raj

ABSTRACTA model is presented to explain the grain growth that is often observed during superplastic deformation. The atomic structure of grain boundaries leads to a coupling between boundary sliding and boundary migration. There is a similar coupling between the absorption or emission of vacancies from a boundary and boundary migration. Because of these couplings, the grain boundary sliding and diffusional flow of superplastic deformation produce extensive boundary migration. We propose that this forced migration leads to random changes in the sizes of grains, and that this evolution of the grain size distribution leads to grain growth.

1999 ◽  
Vol 601 ◽  
Author(s):  
Y. Ikuhara ◽  
T. Watanabe ◽  
T. Yarnamoto ◽  
T. Saito ◽  
H. Yoshida ◽  
...  

AbstractAlumina bicrystals were fabricated by a hot joining technique at 1500°C in air to obtain ten kinds of [0001] symmetric tilt grain boundaries which included small angle, CSL and high angle grain boundaries. Their grain boundary structures were investigated by high-resolution electron microscopy (HREM), and the respective grain boundary energies were systematically measured by a thermal grooving technique. It was found that grain boundary energy strongly depended on the grain boundary characters, e.g., there were large energy cusps at low Σ CSL grain boundaries. But, main part of grain boundary energy is likely to be due to the strain energy around the grain boundary, and the contribution of atomic configuration is not so large. Small angle grain boundaries were consisted of an array of partial dislocation with Burgers vector of 1/3[1100] to form the stacking faults between the dislocations. The behavior of grain boundary sliding was also investigated for typical grain boundaries by high-temperature creep test at 1400°C. As the result, the occurrence of grain boundary sliding was found to depend on the grain boundary atomic structure.


1990 ◽  
Vol 196 ◽  
Author(s):  
T. G. Nieh ◽  
J. Wadsworth

ABSTRACTConcurrent grain growth, and in particular, dynamic grain growth, was observed to take place during superplastic deformation of Y-TZP. As a result of this concurrent grain growth, the measured strain rate sensitivity was found to be lower than that measured under constantstructure conditions. In the present paper, data obtained from the superplastic deformation of YTZP under constant-structure conditions are presented. It is demonstrated that the strain rate sensitivity values are generally higher than 0.5, when measured from the grain size-compensated data; this result suggests a grain boundary sliding mechanism. Microstructures from samples prior to and after superplastic deformation reveal grains which are essentially equiaxed; this observation is also consistent with a grain boundary sliding mechanism. Both high-resolution images of grain boundary triple points using transmission electron microscopy, and fracture surface studies using Auger electron spectroscopy and X-ray photoelectron spectroscopy indicate that there is no evidence for the presence of glassy phases at grain boundaries in Y-TZP.


1985 ◽  
Vol 6 ◽  
pp. 79-82 ◽  
Author(s):  
P. Duval

Crystal size in polar ice caps increases with depth from the snow surface down to several hundred meters. Data on crystal growth in isothermal polar snow and ice show the same linear relationship between the size of crystals and their age. This paper reviews the mechanical behavior of polar ice which exhibits grain growth. Grain boundary migration associated with grain growth appears to be an efficient accomodation process for grain boundary sliding and dislocation glide. For grain growth to occur, strain energy must always be lower than the free energy of boundaries. The sintering of ice particles in polar firn is energized by the pressure due to the overburden of snow. Dislocation creep must be taken into account to explain the densification rate in the intermediate and final stage Constants of power law creep should depend on the crystal growth rate.


1999 ◽  
Vol 32 (1-4) ◽  
pp. 187-195 ◽  
Author(s):  
V. Sursaeva ◽  
U. Czubayko ◽  
A. Touflin

Changes of the grain boundary character distribution and texture during normal grain growth have been investigated using the SAC-SEM based method and a 4 circle X-ray texture goniometer on A1 strips with columnar structure. The microstructure of the strips consists of regions with oriented (clusters) and randomly oriented grains. All changes of microstructure are outside the clusters during normal grain growth and consequently no texture change was observed.


2004 ◽  
Vol 467-470 ◽  
pp. 545-550 ◽  
Author(s):  
David J. Prior ◽  
Michel Bestmann ◽  
Angela Halfpenny ◽  
Elisabetta Mariani ◽  
Sandra Piazolo ◽  
...  

Misorientation analysis, using EBSD data sets, has enabled us to constrain better recrystallization mechanisms in rocks and minerals. Observed microstructures are not explicable in terms of recovery, boundary bulging and migration alone. We have to invoke either a nucleation process (physics unknown) or grain rotations that are not related to grain or boundary crystallography. Such rotations can occur by diffusion accommodated grain boundary sliding and this mechanism explains best the microstructure and texture of recrystallized grains in some rocks.


Sign in / Sign up

Export Citation Format

Share Document