scholarly journals Temperature Dependence of Grain Boundary Structure and Grain Growth in Bulk Silicon-Iron.

2003 ◽  
Vol 43 (2) ◽  
pp. 245-250 ◽  
Author(s):  
Jeong Sik Choi ◽  
Duk Yong Yoon
1999 ◽  
Vol 32 (1-4) ◽  
pp. 187-195 ◽  
Author(s):  
V. Sursaeva ◽  
U. Czubayko ◽  
A. Touflin

Changes of the grain boundary character distribution and texture during normal grain growth have been investigated using the SAC-SEM based method and a 4 circle X-ray texture goniometer on A1 strips with columnar structure. The microstructure of the strips consists of regions with oriented (clusters) and randomly oriented grains. All changes of microstructure are outside the clusters during normal grain growth and consequently no texture change was observed.


2004 ◽  
Vol 449-452 ◽  
pp. 265-268 ◽  
Author(s):  
Tetsuhiko Onda ◽  
H. Yamauchi ◽  
Motozo Hayakawa

The effect of CoO addition into Y-TZP (Yttria doped Tetragonal Zirconia Polycrystals) was studied on the evolution of its sintering ability, grain size, grain boundary structure and mechanical properties. The doping of a small amount of CoO effectively reduced the sintering temperature. A small amount of CoO up to ~ 0.3 mol% was effective for the suppression of grain growth, but the addition of 1.0 mole % resulted in an enhanced grain growth. The hardness and toughness of the CoO doped TZP were about the same as those of undoped TZP. Furthermore, despite the grain refinement, CoO doped TZP did not exhibit improved mechanical properties. This may be suggesting that CoO dopant had weakened the grain boundary strength.


2013 ◽  
Vol 785-786 ◽  
pp. 512-516
Author(s):  
Ying Jun Gao ◽  
Wen Quan Zhou ◽  
Yao Liu ◽  
Chuang Gao Huang ◽  
Qiang Hua Lu

The two-mode phase field-crystal (PFC) method is used to simulate the nanograin growth, including the grain growth in different sets of crystal planes, the grain boundary structure with mismatch, the grain orientation and also the incoherent grain boundary in two dimensional plane. It is obviously observed that there are dislocation structures in nanograin boundary due to mismatch and misorientation of grains. These simulation results can not only be used in artificial controlling the grain boundary of nanograin, but also is of significant for designing new nanograin with a good grain boundary for structure materials.


2005 ◽  
Vol 475-479 ◽  
pp. 3891-3896 ◽  
Author(s):  
Si Young Choi ◽  
Suk Joong L. Kang

The design of microstructure in materials, ranging from ultrafine, moderately sized, duplex to single crystalline, has long been a challenging subject to material scientists. A basic means to achieve this goal is related to the control of grain growth. Taking BaTiO3 as a model system, this investigation shows that control of grain boundary structure between rough and faceted and control of initial grain size can allow us to achieve the goal. When the grain boundary is rough, normal grain growth occurs with a moderate rate. On the other hand, for faceted boundaries, either abnormal grain growth or grain growth inhibition occurs resulting in a duplex grain structure or fine-grained structure, respectively. Growth of single crystals is also possible when the boundary is faceted. During crystal growth amorphous films can form and thicken at dry grain boundaries above the eutectic temperature. As the film thickness increases, the growth rate of the crystals is reduced. This observed growth behavior of grains with boundary structure is explained in terms of the difference in mobility between the two types of boundaries. The results demonstrate the basic principles of obtaining various microstructures from the same material.


1990 ◽  
Vol 196 ◽  
Author(s):  
H. J. Frost ◽  
R. Raj

ABSTRACTA model is presented to explain the grain growth that is often observed during superplastic deformation. The atomic structure of grain boundaries leads to a coupling between boundary sliding and boundary migration. There is a similar coupling between the absorption or emission of vacancies from a boundary and boundary migration. Because of these couplings, the grain boundary sliding and diffusional flow of superplastic deformation produce extensive boundary migration. We propose that this forced migration leads to random changes in the sizes of grains, and that this evolution of the grain size distribution leads to grain growth.


Sign in / Sign up

Export Citation Format

Share Document