dislocation glide
Recently Published Documents


TOTAL DOCUMENTS

389
(FIVE YEARS 64)

H-INDEX

37
(FIVE YEARS 4)

Author(s):  
Mingxu Wu ◽  
Shubin Wang ◽  
Fei Xiao ◽  
Guoliang Zhu ◽  
Chao Yang ◽  
...  

Solid Earth ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 2369-2385
Author(s):  
Jean Furstoss ◽  
Carole Petit ◽  
Clément Ganino ◽  
Marc Bernacki ◽  
Daniel Pino-Muñoz

Abstract. This paper presents a new mesoscopic full field approach for the modeling of microstructural evolutions and mechanical behavior of olivine aggregates. The mechanical framework is based on a reduced crystal plasticity (CP) formulation which is adapted to account for non-dislocation glide strain-accommodating mechanisms in olivine polycrystals. This mechanical description is coupled with a mixed velocity–pressure finite element (FE) formulation through a classical crystal plasticity finite element method (CPFEM) approach. The microstructural evolutions, such as grain boundary migration and dynamic recrystallization, are also computed within a FE framework using an implicit description of the polycrystal through the level-set approach. This numerical framework is used to study the strain localization, at the polycrystal scale, on different types of pre-existing shear zones for thermomechanical conditions relevant to laboratory experiments. We show that both fine-grained and crystallographic textured pre-existing bands favor strain localization at the sample scale. The combination of both processes has a large effect on strain localization, which emphasizes the importance of these two microstructural characteristics (texture and grain size) on the mechanical behavior of the aggregate. Table 1 summarizes the list of the acronyms used in the following.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1610
Author(s):  
Satoshi Utada ◽  
Lucille Després ◽  
Jonathan Cormier

Very high temperature creep properties of twelve different Ni-based single crystal superalloys have been investigated at 1250 °C and under different initial applied stresses. The creep strength at this temperature is mainly controlled by the remaining γ′ volume fraction. Other parameters such as the γ′ precipitate after microstructure evolution and the γ/γ′ lattice parameter mismatch seem to affect the creep strength to a lesser degree in these conditions. The Norton Law creep exponent lies in the range 6–9 for most of the alloys studied, suggesting that dislocation glide and climb are the rate limiting deformation mechanisms. Damage mechanisms in these extreme conditions comprise creep strain accumulation leading to pronounced necking and to recrystallization in the most severely deformed sections of the specimens.


2021 ◽  
Vol 203 ◽  
pp. 114045
Author(s):  
Shohei Ueki ◽  
Yoji Mine ◽  
Xinyu Lu ◽  
Yu Lung Chiu ◽  
Paul Bowen ◽  
...  

2021 ◽  
Vol 64 (8) ◽  
pp. 599-605
Author(s):  
V. E. Gromov ◽  
Yu. A. Rubannikova ◽  
S. V. Konovalov ◽  
K. A. Osintsev ◽  
S. V. Vorob’ev

The article considers a brief review of the last years of Russian and foreign research on the possibilities of improving mechanical properties of the Cantor quinary high­entropy alloy (HEA) with different phase composition in wide temperature range. The alloy, one of the frst created equimolar HEAs with FCC structure, needs mechanical properties improvement in accordance with possible felds of application in spite of its high impact toughness and increased creep resistance. It has been noted that bimodal distribution of the grains by sizes under severe plastic torsional strain at high pressure of 7.8 GPa of cast alloy and subsequent short­time annealing at 873 and 973 K can change strength and plastic properties. Nanodimensional scale of the grains surrounded by amorphous envelope has been obtained for HEA produced by the method of magnetron sputtering and subsequent annealing at 573 K. In such a two­phase alloy nanohardness amounted to 9.44 GPa and elasticity modulus – to 183 GPa. Using plasticity effect induced by phase transformation in (CrMnFeCoNi)50Fe50 alloy obtained by the method of laser additive technology the ultimate strength of 415 – 470 MPa has been reached at high level of plasticity up to 77 %. It has been ensured by FCC → BCC diffusionless transformation. It is shown that difference in mechanisms of plastic strain of cast alloy at 77 K and 293 K (dislocation glide and twinning) determines a combination of increased “strength­plasticity” properties. Samples for generation of twins prestrained at 77 K exhibit increased strength and plasticity under subsequent loading at 293 K in comparison with the unstrained ones. For HEA obtained by laser additive technology this way of increasing properties is also true. The way of improving mechanical properties at the expense of electron beam processing is noted. The attention is paid to the necessity of taking into account the role of entropy, crystal lattice distortions, short­range order, weak diffusion and “cocktail” effect in the analysis of mechanical properties.


2021 ◽  
Vol 197 ◽  
pp. 110569
Author(s):  
Eduardo A. Barros de Moraes ◽  
Jorge L. Suzuki ◽  
Mohsen Zayernouri

Author(s):  
Farhan Ashraf ◽  
Gustavo M. Castelluccio

AbstractThe mechanical response of metallic materials is controlled by multiple deformation mechanisms that coexist across scales. Dislocation glide is one such process that occurs after bypassing obstacles. In macroscopic well-annealed single-phase metals, weak obstacles such as point defects, solid solution strengthening atoms, short-range dislocation interactions, and grain boundaries control dislocation glide by pinning the scarce dislocation density. This work investigates the dislocation glide energy barrier in face-centered cubic (FCC) metallic materials by considering a crystal plasticity model that computes the yield strength as a function of temperature. The dislocation glide energy barrier is parameterized by three different formulations that depend on two parameters. A Monte Carlo analysis randomly determines all other coefficients within uncertainty bounds identified from the literature, followed by fitting the two energy barrier parameters to experimental data. We consider ten FCC materials to demonstrate that the methodology characterizes robustly the dislocation glide energy barrier used by crystal plasticity models. Furthermore, we discovered a correlation between the glide barrier and the stacking fault energy that can be used as a basis to infer the glide activation energy. Graphical abstract


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung-Dae Kim ◽  
Seong-Jun Park ◽  
Jae hoon Jang ◽  
Joonoh Moon ◽  
Heon-Young Ha ◽  
...  

AbstractWe investigated the effect of κ-carbide precipitates on the strain hardening behavior of aged Fe–Mn-Al-C alloys by microstructure analysis. The κ-carbides-strengthened Fe–Mn-Al-C alloys exhibited a superior strength-ductility balance enabled by the recovery of the strain hardening rate. To understand the relation between the κ-carbides and strain hardening recovery, dislocation gliding in the aged alloys during plastic deformation was analyzed through in situ tensile transmission electron microscopy (TEM). The in situ TEM results confirmed the particle shearing mechanism leads to planar dislocation gliding. During deformation of the 100 h-aged alloy, some gliding dislocations were strongly pinned by the large κ-carbide blocks and were prone to cross-slip, leading to the activation of multiple slip systems. The abrupt decline in the dislocation mean free path was attributed to the activation of multiple slip systems, resulting in the rapid saturation of the strain hardening recovery. It is concluded that the planar dislocation glide and sequential activation of slip systems are key to induce strain hardening recovery in polycrystalline metals. Thus, if a microstructure is designed such that dislocations glide in a planar manner, the strain hardening recovery could be utilized to obtain enhanced mechanical properties of the material.


Sign in / Sign up

Export Citation Format

Share Document