Adhesion of Cyclotene™ (BCB) Coatings on Silicon Substrates

1993 ◽  
Vol 323 ◽  
Author(s):  
P. H. Townsend ◽  
D. Schmidt ◽  
T. M. Stokich ◽  
S. Kisting ◽  
D. C. Burdeaux ◽  
...  

AbstractThis work examines the adhesion of coatings derived from divinylsiloxane bisbenzocyclobutene, mixed stereo and positional isomers of 1,3-bis(2-bicyclo[4.2.0]octa-1,3,5-trien-3-ylethenyl)-1,1,3,3-tetramethyl disiloxane (CAS 117732–87–3), on oxidized silicon substrates treated with silane coupling agents.This material, commercially available as Cyclotene™ 3022, can be used in the construction of high performance electronic circuits, such as multichip modules. Silane coupling agents examined in this study were 3-aminopropyltriethoxysilane (CAS 01760-24-3)(APTES)(, vinyltriethoxysilane (CAS 00078–08–0)(VTES), and 3-methacryloxypropyl trimethoxysilane (CAS 02530–85–0) (MOP-TMS).Measurement of the interfacial adhesion was performed using microindentation. Bond strengths obtained by this method exceed 200 MPa for the most effective coupling agents. However, these high bond strengths were not found to correlate with acceptable adhesive performance in all cases. In addition to the choice and preparation of the coupling agent, process related chemical exposure has been found to be a key element in the observed adhesive performance. The effect of the cure schedule for the thermoset coating has also been found to be a controlling factor. A short cycle test vehicle was developed consisting of a single 20 gIm polymer layer etched with anisotropic sidewalls. This test vehicle was used to evaluate the efficacy of the coupling agents during process exposures and subsequent thermal shock testing. A solution of MOP-TMS pre-hydrolyzed in methanol was found to produce the most reliable interface with high bond strength.

2017 ◽  
Vol 54 (2) ◽  
pp. 341-344
Author(s):  
Anda Ionelia Mihai (Voicu) ◽  
Sorina Alexandra Garea ◽  
Eugeniu Vasile ◽  
Cristina Lavinia Nistor ◽  
Horia Iovu

The goal of this paper was to study the modification of porous clay heterostructures (PCHs) with various silane coupling agents. Two commercial coupling agents (3-aminopropyl-triethoxysilane (APTES) and 3-glycidoxypropyl-trimethoxysilane (GPTMS)) with different functional groups (amine and epoxy groups) were used as modifying agents for the PCHs functionalization. The functionalization of PCH with APTES and GPTMS was evaluated by Fourier transform infrared (FTIR) spectrometry, thermogravimetric analysis (TGA), X-Ray Diffractions (XRD) and BET Analysis. FTIR spectra of modified PCHs confirmed the presence of characteristic peaks of silane coupling agents. TGA results highlighted an increase of weight loss for the modified PCHs that was assigned to the degradation of silane coupling agents (APTES and GPTMS) attached to the PCHs. The XRD results showed that the structure of modified PCHs was influenced by the type of the silane coupling agent. The functionalization of PCHs with silane coupling agents was also confirmed by BET analysis. Textural parameters (specific surface area (SBET), total pore volume (Vt )) suggested that the modified PCHs exhibit lower values of SBET and a significant decrease of total pore volume than unmodified PCHs.


2021 ◽  
Vol 22 (1) ◽  
pp. 109-122
Author(s):  
S. Riaz ◽  
M. Ashraf ◽  
T. Hussain ◽  
M. T. Hussain ◽  
A. Younus ◽  
...  

Author(s):  
Xiaowei Zhang ◽  
Zilong Wang ◽  
Tianhao Li ◽  
Shengjie Zhu ◽  
Dunbo Yu ◽  
...  

Author(s):  
Tomasz Sokolnicki ◽  
Adrian Franczyk ◽  
Bartlomiej Janowski ◽  
Jedrzej Walkowiak

Sign in / Sign up

Export Citation Format

Share Document