ftir spectrometry
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 38)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Rabia Ayoubi ◽  
Sadia Wali ◽  
Gyanesh B Singh

Ocimum kilimandscharicum Guerke, a member of the family Lamiaceae, is a valuable medicinal plant used both in traditional and modern medicine. It is a perennial aromatic undershrub with tremendous phytochemical polymorphism. The present study aims to assess the amount of eugenol in the essential oil (EO) of O. kilimandscharicum. Eugenol is one of the most popular phenolic compounds, which is naturally synthesized and extracted from the EO of different plant species. The fresh leaves and flowers of O. kilimandsharicum were used to extract EO using a hydrodistillation method. Ultraviolet (UV) and Fourier Transform Infrared (FTIR) spectrometry techniques were used to assess and quantify the chemical fingerprint of the EO and their main phytoconstituents. In this study, eugenol showed its peak absorbance to be around 282 nm in both the EO and pure eugenol spectra. The FTIR spectra of the EO and eugenol showed different functional groups determined by comparing the vibration frequencies in wave numbers of the EO and eugenol spectra with those of an IR correlation chart. Eugenol is a well-known phenolic compound with medicinal and economic value. The UV and FTIR spectra of the EO of O. kilimandsharicum proved the presence of a high amount of eugenol in the O. kilimandscharicum plant.


2021 ◽  
Vol 930 (1) ◽  
pp. 012020
Author(s):  
T Setianingsih ◽  
D Purwonugroho ◽  
YP Prananto

Abstract Patchouli biomass is a potential precursor for CNS synthesis. In this research, the patchouli was pyrolyzed using the microwave. The purpose of this research is to study the effect of microwave energy and activator toward physicochemistry of CNS and composite (ZnO/CNS) and application of ZnCr2O4/CNS for the pesticide polluted surface water remediation in paddy field. In the process, the biomass was pyrolyzed at four and 8W with and without the ZnCl2 activator. The products were blended and evaporated to obtain CNS and ZnO/CNS. The products were characterized using FTIR spectrometry, XRD, and dispersion test. The composites were used to synthesize ZnCr2O4/CNS at 600W in the microwave. The composites were used for buthylphenylmethyl carbamate pesticide degradation test (BPMC) for 48 h with H2O2 oxidation. The FTIR spectra indicated better carbonization for products taken using an activator at both microwave energies. The X-ray diffractograms showed the turbostratic structure of carbon obtained at 4W pyrolysis (with activator), meanwhile 8W pyrolysis (without activator). ZnO and turbostratic carbon structures were shown by the product of 8W pyrolisis with activator. The calcined composite indicated ZnCr2O4/CNS. The degradation test showed that ZnCr2O4/CNS(8W) catalyst decreased the BMPC concentration almost three times that of the composite (4W).


2021 ◽  
Vol 118 ◽  
pp. 103900 ◽  
Author(s):  
Mahsa Mohammadi ◽  
Mohammadreza Khanmohammadi Khorrami ◽  
Hossein Ghasemzadeh ◽  
Peyman Noor ◽  
Shima Zandbaaf

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5060
Author(s):  
Jong-Man Yoo ◽  
Sung Soo Park ◽  
Yong-Zhu Yan ◽  
Chang-Sik Ha

Recently, the release of some metal ions to the environment has been observed to cause serious damages to human health and the environment. Herein, a chromium(VI)- and zinc(II)-selective adsorbent (CB18crown6/SBA-15) was successfully fabricated through the covalent attachment of 4′-carboxybenzo-18-crown-6 (CB18crown6) as a ligand on mesoporous silica support (SBA-15). The CB18crown6/SBA-15 adsorbent was characterized by Fourier-transform infrared (FTIR) spectrometry, X-ray diffraction (XRD), N2 adsorption–desorption, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). To evaluate its ability to selectively capture Cr(VI) and Zn(II), adsorption experiments were conducted. The influences of pH, initial concentration of metal ions, and coexisting metal ions on the adsorption process were examined. The CB18crown6/SBA-15 selectively adsorbed Cr(VI) at pH 2 and Zn(II) at pH 5, respectively, from the mixed aqueous solutions of chromium, zinc, lithium, cadmium, cobalt, strontium, and cesium ions. The data for the adsorption of Cr(VI) onto the CB18crown6/SBA-15 were well explained by the Langmuir adsorption isotherm. In addition, the recycling and reuse of CB18crown6/SBA-15 was successfully achieved, and 71 and 76% reuse efficiency of Cr(VI) and Zn(II), respectively, was obtained after five cycles. This study suggests that the use of the CB18crown6/SBA-15 can be a feasible approach for the selective remediation of Cr(VI) and Zn(II) contamination.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1911
Author(s):  
Andrei Viorel Paduraru ◽  
Adina Magdalena Musuc ◽  
Ovidiu Cristian Oprea ◽  
Roxana Trusca ◽  
Florin Iordache ◽  
...  

Improved compounds of Ce(III) and Ce(IV)-doped hydroxyapatite (Ca10-xCex(PO4)6(OH)2) with different concentrations such as x = 0.5, 1, 2.5, 5, and 10%, obtained by the simple co-precipitation method were synthesized. The cerium (3+) and cerium (4+)-doped hydroxyapatite were evaluated for biocompatibility and fluorescence properties. It was found that the cerium-HAp powders were non-toxic, even at higher level of concentration. The synthesized powders were further characterized by FTIR spectrometry, UV-Vis spectroscopy, XRD diffraction, SEM and TEM analysis. Therefore, the present study proves that the developed cerium (3+) and cerium (4+)-doped hydroxyapatite, respectively can be widely used as luminescent labeling materials, with improved biological properties.


2021 ◽  
Vol 11 (15) ◽  
pp. 6735
Author(s):  
Štefan Ailer ◽  
Roman Serenčéš ◽  
Dagmar Kozelová ◽  
Zuzana Poláková ◽  
Silvia Jakabová

The influence of the technological processes of grape processing on the content of hydroxycinnamic acids and volatile phenolic substances in wine was studied. The method of targeted oxygenation was applied in grape processing technology of the Welschriesling and Chardonnay grape varieties. The content of volatile phenolic substances was determined by gas chromatography, the content of hydroxycinnamic acids by liquid chromatography, and the basic analytical parameters of the wine by FTIR spectrometry. The method of targeted must oxygenation had a statistically significant effect on the content of hydroxycinnamic acids and volatile phenolics in the wine. In all three monitored years (2015–2017), the content of 4-vinylphenol and 4-vinylguajacol in the wine significantly decreased. A significant dependence between the content of hydroxycinnamic acids and volatile phenolics was found. The experiment showed that a 1% increase in the content of hydroxycinnamic acids in the Chardonnay variety could result in an average increase in the content of monitored volatile phenolics by 3.6% (3 years’ data). Naturally reducing the content of hydroxycinnamic acids, with the application of technological processes, eliminated the oxidative processes during wine maturation. Sensory undesirable volatile phenolic substances were consequently formed in lower quantities, and there was no negative impact on the favourable sensory properties of wine. It was not necessary to use the polyvinylpolypyrrolidone adsorbents.


Author(s):  
A. F. Danil de Namor ◽  
M. Al Nuaim ◽  
G. Fairclough ◽  
R. Khalife ◽  
N. Al Hakawati

AbstractThe synthesis and structural characterisation (Fourier transform infrared, FTIR spectrometry, scanning electron microscopy, SEM and energy-dispersive X-ray, EDX) of amino-modified silicates (unloaded L1, and aspirin-loaded, L2) are reported. The optimal conditions for the extraction of aspirin from water by the modified silicate material were determined as a function of the mass of the extracting agent and the pH of the aqueous solution. The optimum mass was found to be 0.08–0.10 g with 99.9% removal of aspirin. Maximum extraction of aspirin by the material was observed at pH 4. The kinetics, the removal capacity of the material, as well as its recycling, were investigated. The results indicate that (i) the process is fast and (ii) the removal capacity for the drug is greater than that of previously reported materials and (iii)the modified silicate can be easily recycled. These data along with the low cost involved in the production of the material led to the conclusion that the modified silicate has the required potential for industrial use. Molecular simulation calculations suggest that one unit of aspirin interacts with one unit of the modified silicate L1 through hydrogen bond formation between the amine functional group of the silicate and the oxygen donor atoms of aspirin. Final conclusions are given.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1381
Author(s):  
Sufyan Garoushi ◽  
Lippo Lassila ◽  
Pekka K. Vallittu

To study the influence of fast high-intensity (3-s) and conventional (20-s) light curing protocols on certain physical properties including light-transmission and surface wear of two nano-hybrid composite resins (Tetric PowerFill and Essentia U) specifically designed for both curing protocols. According to ISO standards, the following properties were investigated: flexural properties, fracture toughness and water sorption/solubility. FTIR-spectrometry was used to calculate the double bond conversion (DC%). A wear test using a chewing simulator was performed with 15,000 chewing cycles. A tensilometer was used to measure the shrinkage stress. Light transmission through various thicknesses (1, 2, 3 and 4 mm) of composite resins was quantified. The Vickers indenter was utilized for evaluating surface microhardness (VH) at the top and the bottom sides. Scanning electron microscopy was utilized to investigate the microstructure of each composite resin. The light curing protocol did not show a significant (p > 0.05) effect on the mechanical properties of tested composite resins and differences were material-dependent. Shrinkage stress, DC% and VH of both composite resins significantly increased with the conventional 20 s light curing protocol (p < 0.05). Light curing conventional composite resin with the fast high-intensity (3-s) curing protocol resulted in inferior results for some important material properties.


2021 ◽  
Vol 13 (4) ◽  
pp. 791
Author(s):  
Hao Yin ◽  
Youwen Sun ◽  
Ziheng Song ◽  
Cheng Liu ◽  
Wei Wang ◽  
...  

Remote sensing of atmospheric hydrogen fluoride (HF) is challenging because it has weak absorption signatures in the atmosphere and is surrounded by strong absorption lines from interfering gases. In this study, we first present a multi-year time series of HF total columns over Hefei, China by using high-resolution ground-based Fourier transform infrared (FTIR) spectrometry. Both near-infrared (NIR) and mid-infrared (MIR) solar spectra suites, which are recorded following the requirements of Total Carbon Column Observing Network (TCCON) and Network for the Detection of Atmospheric Composition Change (NDACC), respectively, are used to retrieve total column of HF (THF) and column-averaged dry-air mole fractions of HF (XHF). The NIR and MIR observations are generally in good agreement with a correlation coefficient (R) of 0.87, but the NIR observations are found to be (6.90 ± 1.07 (1σ)) pptv, which is lower than the MIR observations. By correcting this bias, the combination of NIR and MIR observations discloses that the XHF over Hefei showed a maximum monthly mean value of (64.05 ± 3.93) pptv in March and a minimum monthly mean value of (45.15 ± 2.93) pptv in September. The observed XHF time series from 2015 to 2020 showed a negative trend of (−0.38 ± 0.22) % per year. The variability of XHF is inversely correlated with the tropopause height, indicating that the variability of tropopause height is a key factor that drives the seasonal cycle of HF in the stratosphere. This study can enhance the understanding of ground-based high-resolution remote sensing techniques for atmospheric HF and its evolution in the stratosphere and contribute to forming new reliable remote sensing data for research on climate change.


Sign in / Sign up

Export Citation Format

Share Document