adhesive performance
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 38)

H-INDEX

22
(FIVE YEARS 5)

Author(s):  
Huai  N. Cheng ◽  
Kaylin Kilgore ◽  
Catrina Ford ◽  
Jade Smith ◽  
Michael K. Dowd ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3509
Author(s):  
Jiaqi Zhang ◽  
Yingjie Yi ◽  
Chenwei Wang ◽  
Ling Ding ◽  
Ruijin Wang ◽  
...  

Three-dimensional printing polyetheretherketone (PEEK) provides a new choice for dental prostheses, while its appropriate bonding procedure and adhesive performance are still unclear. This study aimed to investigate the adhesive performance of printed polyetheretherketone (PEEK) after acid etching to veneering resin. In total, 182 PEEK specimens (including 91 printed and 91 milled specimens) were distributed to 14 subgroups (n = 13/subgroup), according to the manufacturing process and surface treatment. The specimens were polished and etched with sulfuric acid for 0, 5, 30, 60, 90, 120, and 300 s, respectively. Two specimens in each subgroup were observed under a scanning electron microscope (SEM) for surface and cross-section morphology separately. Then, the specimens were treated with a bonding primer, and one specimen in each subgroup was prepared for cross-sectional observation under SEM. The residual 10 specimens of each subgroup bonded with veneering resin were tested with the shear bond strength tests (SBS) and failure modes analysis. Statistical analysis was performed by one-way ANOVA followed by the SNK-q post hoc test (p < 0.05). The etched pores on the PEEK surface were broadened and deepened under SEM over time. Printed PEEK etched for 30 s obtained the best SBS-to-veneering-resin ratio (27.90 ± 3.48 MPa) among the printed subgroups (p < 0.05) and had no statistical differences compared with milled PEEK etched for 30 s. The SBS of the milled subgroups etched from 5 to 120 s were over 29 MPa without significant between-group statistical differences. Hence, printed PEEK can be coarsened effectively by 30 s of sulfuric acid etching. The adhesion efficacy of printed PEEK to veneering resin was qualified for clinical requirements of polymer-based fixed dentures.


2021 ◽  
Vol 301 ◽  
pp. 124078
Author(s):  
Łukasz Sadowski ◽  
Łukasz Kampa ◽  
Agnieszka Chowaniec ◽  
Aleksandra Królicka ◽  
Andrzej Żak ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2627
Author(s):  
Irene Márquez ◽  
Núria Paredes ◽  
Felipe Alarcia ◽  
José Ignacio Velasco

A series of pressure-sensitive adhesives (PSAs) was prepared using a constant monomeric composition and different preparation processes to investigate the best combination to obtain the best balance between peel resistance, tack, and shear resistance. The monomeric composition was a 1:1 combination of two different water-based acrylic polymers—one with a high shear resistance (A) and the other with a high peel resistance and tack (B). Two different strategies were applied to prepare the adhesives: physical blending of polymers A and B and in situ emulsion polymerization of A + B, either in one or two steps; in this last case, by polymerizing A or B first. To characterize the polymer, the average particle size and viscosity were analyzed. The glass transition temperature (Tg) was determined by differential scanning calorimetry (DSC). The tetrahydrofuran (THF) insoluble polymer fraction was used to calculate the gel content, and the soluble part was used to determine the average sol molecular weight by means of gel permeation chromatography (GPC). The adhesive performance was assessed by measuring tack as well as peel and shear resistance. The mechanical properties were obtained by calculating the shear modulus and determination of maximum stress and the deformation energy. Moreover, an adhesive performance index (API) was designed to determine which samples are closest to the requirements demanded by the self-adhesive label market.


2021 ◽  
Vol 288 (1953) ◽  
pp. 20210650
Author(s):  
Aaron H. Griffing ◽  
Thomas J. Sanger ◽  
Lilian Epperlein ◽  
Aaron M. Bauer ◽  
Anthony Cobos ◽  
...  

Among the most specialized integumentary outgrowths in amniotes are the adhesive, scale-like scansors and lamellae on the digits of anoles and geckos. Less well-known are adhesive tail pads exhibited by 21 gecko genera. While described over 120 years ago, no studies have quantified their possible adhesive function or described their embryonic development. Here, we characterize adult and embryonic morphology and adhesive performance of crested gecko ( Correlophus ciliatus ) tail pads. Additionally, we use embryonic data to test whether tail pads are serial homologues to toe pads. External morphology and histology of C . ciliatus tail pads are largely similar to tail pads of closely related geckos. Functionally, C . ciliatus tail pads exhibit impressive adhesive ability, hypothetically capable of holding up to five times their own mass. Tail pads develop at approximately the same time during embryogenesis as toe pads. Further, tail pads exhibit similar developmental patterns to toe pads, which are markedly different from non-adhesive gecko toes and tails. Our data provide support for the serial homology of adhesive tail pads with toe pads.


Author(s):  
Capella F Kerst ◽  
Mark R. Cutkosky

Abstract In the fabrication of directional gecko-inspired adhesives, a new capability made possible by the availability of metal molds is hot compression molding. This molding process allows the use of elastomers with much higher toughness than those cast at ambient temperature and pressure, as has been the common case in fabricating adhesives. In addition, it permits fast cycle times (minutes instead of hours), which is useful for volume manufacturing. We present the results of hot compression molding of elastomers in metal molds created with overhanging and tapered microscopic surface features, which give rise to anisotropic adhesion. We show that the adhesive performance so obtained is equivalent to that obtained earlier with PDMS.


2021 ◽  
pp. 110511
Author(s):  
Caizhao Liu ◽  
Bin Zhang ◽  
Mingming Sun ◽  
Xiang Liu ◽  
Xugang Zhang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document