Characterization of High-Level Nuclear Waste Glass Using Magnetic Measurements

1993 ◽  
Vol 333 ◽  
Author(s):  
Frank E. Senftle ◽  
Arthur N. Thorpe ◽  
Julius R. Grant ◽  
Aaron Barkatt

ABSTRACTMagnetic measurements constitute a promising method for the characterization of nuclear waste glasses in view of their simplicity and small sample weight requirements.Initial studies of simulated high-level waste glasses show that the Curie constant is generally a useful indicator of the Fe2+:Fe3+ ratio. Glasses produced by air-cooling in large vessels show systematic deviations between experimental and calculated values, which are indicative of the presence of small amounts of crystalline iron-containing phases. Most of the iron in these phases becomes dissolved in the glass upon re-heating and more rapid quenching. The studies further show that upon leaching the glass in water some of the iron in the surface regions of the glass is converted to a form which has high temperature-independent magnetic susceptibility.

2015 ◽  
Vol 1744 ◽  
pp. 85-91 ◽  
Author(s):  
José Marcial ◽  
John McCloy ◽  
Owen Neill

ABSTRACTThe understanding of the crystallization of aluminosilicate phases in nuclear waste glasses is a major challenge for nuclear waste vitrification. Robust studies on the compositional dependence of nepheline formation have focused on large compositional spaces with hundreds of glass compositions. However, there are clear benefits to obtaining complete descriptions of the conditions under which crystallization occurs for specific glasses, adding to the understanding of nucleation and growth kinetics and interfacial conditions. The focus of this work was the investigation of the microstructure and composition of one simulant high-level nuclear waste glass crystallized under isothermal and continuous cooling schedules. It was observed that conditions of low undercooling, nepheline was the most abundant aluminosilicate phase. Further undercooling led to the formation of additional phases such as calcium phosphate. Nepheline composition was independent of thermal history.


2019 ◽  
Vol 9 (12) ◽  
pp. 2437 ◽  
Author(s):  
Sebastian Wegel ◽  
Victoria Czempinski ◽  
Pao-Yu Oei ◽  
Ben Wealer

The nuclear industry in the United States of America has accumulated about 70,000 metric tons of high-level nuclear waste over the past decades; at present, this waste is temporarily stored close to the nuclear power plants. The industry and the Department of Energy are now facing two related challenges: (i) will a permanent geological repository, e.g., Yucca Mountain, become available in the future, and if yes, when?; (ii) should the high-level waste be transported to interim storage facilities in the meantime, which may be safer and more cost economic? This paper presents a mathematical transportation model that evaluates the economic challenges and costs associated with different scenarios regarding the opening of a long-term geological repository. The model results suggest that any further delay in opening a long-term storage increases cost and consolidated interim storage facilities should be built now. We show that Yucca Mountain’s capacity is insufficient and additional storage is necessary. A sensitivity analysis for the reprocessing of high-level waste finds this uneconomic in all cases. This paper thus emphasizes the urgency of dealing with the high-level nuclear waste and informs the debate between the nuclear industry and policymakers on the basis of objective data and quantitative analysis.


2019 ◽  
Vol 320 (3) ◽  
pp. 627-631
Author(s):  
Vidya Thorat ◽  
N. Soudamini ◽  
Arijit Sengupta ◽  
R. K. Mishra ◽  
Amar Kumar ◽  
...  

1996 ◽  
Vol 465 ◽  
Author(s):  
I. A. Sobolev ◽  
S. V. Stefanovsky ◽  
S. V. Ioudintsev ◽  
B. S. Nikonov ◽  
B. I. Omelianenko ◽  
...  

ABSTRACTPreparation and characterization of inductively-melted Synroc containing 20 wt% simulated plant “Mayak” reprocessing waste were performed. The sample bulk composition was as follows, (in wt.%): 55.4 TiO2; 15.8 ZrO2; 7.5 CaO; 7.4 BaO; 4.3 Al2O3 2.0 MnO; 1.8 SiO2; 0.7 Na2O; 1.9 K2O, 0.5 Ce2O3; 1.0 UO2; 0.9 NiO; 0.6 Cr2O3, and 0.2 FeO. The sample was produced by melting in air at 1550–1600 °C under barometric pressure. It is composed of a few crystalline phases and a minor glass phase. Most of the phases (hollandite, zirconolite, perovskite and rutile) are similar to the analogous phases found in the other Synroc formulations. An additional phase with average composition, wt.%: 59.8 TiO2; 15.6 CaO; 7.0 UO2; 5.6 ZrO2; 4.7 MnO; 4.1 Ce2O3, and 1.8 Al2O3 was found. Some elements (Ba, Si, Ni, K, Na, Fe) were present in the phase in negligible quantities. Its formula (Ca2.65U0.3Ce0.2)(Ti7.3Mn0.6Zr0.4Al0.3)O20.0 is rather close to a rare mineral uhligite - Ca3(Ti,Zr,Al)9O20. Another possible counterpart of the phase is murataite-like mineral previously described in tailored ceramic designed for Savannah River Plant wastes fixation. This phase as well as zirconolite are the major host for U in the sample Preliminary data on the material leachability in water at 350 °C and 50 MPa have been obtained Uranium contents in the solution were about 1 ppb and close to the uranium dioxide solubility in deionized water under the same P-T conditions.


2004 ◽  
Vol 824 ◽  
Author(s):  
Zhicheng Zhang ◽  
Linfeng Rao ◽  
Dhanpat Rai ◽  
Sue B. Clark

AbstractChromium is of great concern in the vitrification of high-level nuclear waste sludges because it forms separate crystallites in the molten glass. Inadequate removal of chromium from sludges could result in the production of an unacceptably large volume of HLW glass. Alkaline oxidative leaching is considered one of the pretreatment strategies to remove chromium before the vitrification.In this study, Cr(III) hydroxide solids were prepared under different conditions and characterized by EXAFS and IR. The rate of oxidation of the solids by hydrogen peroxide in alkaline solutions was studied by UV absorption spectroscopy. EXAFS and IR experiments indicate that the degree of oligomerization in the Cr(III) hydroxide solids increases with the increase in the concentration of NaOH in solution, the aging temperature and the aging time. The rate of oxidation of the solids follows the same order previously observed for Cr(III) oligomers in solution, i.e., species with higher degree of oligomerization are oxidized more slowly.


1993 ◽  
Author(s):  
J.R. Brodeur ◽  
J.P. Kiesler ◽  
S.E. Kos ◽  
C.J. Koizumi ◽  
W.F. Nicaise ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document