Thermal Degradation of Tantalum-Nickel Thin Film Couples

1995 ◽  
Vol 382 ◽  
Author(s):  
M. H. Tabacniks ◽  
A.J. Kellock ◽  
J.E.E. Baglin ◽  
K.R. Coffey ◽  
J.K. Howard ◽  
...  

ABSTRACTMultilayered metal films including such couples as Ta-Permalloy (Ni80Fe20) play a key role in magnetic recording sensors, where it is important to preserve the integrity of the thin permalloy layer under thermal conditions during processing and subsequent service. Earlier work1 has indicated a fast grain boundary diffusion of Ta in Ni films at temperatures as low as 250°C. In this paper, we report measurements of the kinetics of this diffusion, in the temperature range 300–400°C. For this work, layered Ni/Ta systems were prepared under controlled conditions, annealed in a helium-flow furnace, and characterized by RBS, AES, XRD and SEM. The possible consequences of diffusion on magnetic performance are also discussed.

2021 ◽  
Vol 96 (5) ◽  
pp. 055706
Author(s):  
Songyou Lian ◽  
Congkang Xu ◽  
Jiangyong Wang ◽  
Hendrik C Swart ◽  
Jacobus J Terblans

2007 ◽  
Vol 266 ◽  
pp. 13-28 ◽  
Author(s):  
Alan F. Jankowski

Thermal anneal treatments are used to identify the temperature range of the two dominant diffusion mechanisms – bulk and grain boundary. To assess the transition between mechanisms, the low temperature range for bulk diffusion is established utilizing the decay of static concentration waves in composition-modulated nanolaminates. These multilayered structures are synthesized using vapor deposition methods as thermal evaporation and magnetron sputtering. However, at low temperature the kinetics of grain-boundary diffusion are much faster than bulk diffusion. The synthesis of Au-Cu alloys (0-20 wt.% Cu) with grain sizes as small as 5 nm is accomplished using pulsed electro-deposition. Since the nanocrystalline grain structure is thermally unstable, these structures are ideal for measuring the kinetics of grain boundary diffusion as measured by coarsening of grain size with low temperature anneal treatments. A transition in the dominant mechanism for grain growth from grain boundary to bulk diffusion is found with an increase in temperature. The activation energy for bulk diffusion is found to be 1.8 eV·atom-1 whereas that for grain growth at low temperatures is only 0.2 eV·atom-1. The temperature for transitioning from the dominant mechanism of grain boundary to bulk diffusion is found to be 57% of the alloy melt temperature and is dependent on composition.


1983 ◽  
Vol 25 ◽  
Author(s):  
E. C. Zingu ◽  
J. W. Mayer

ABSTRACTInterdiffusion in the Si<100>/Pd2Si/Ni and Si<111>/Pd2Si/Ni thin film systems has been investigated using Rutherford backscattering spectrometry. Nickel is found to diffuse along the grain boundaries of polycrystalline Pd2Si upon which it accumulates at the Si<100>Pd2Si interface. The high mobility of Ni compared to that of si suggests that Pd diffuses faster than Si along the Pd2Si grain boundaries. An activation energy of 1.2 eV is determined for Ni grain boundary diffusion in Pd2Si.


Sign in / Sign up

Export Citation Format

Share Document