The Atomic Structure of Mosaïc Grain Boundary Dislocations in GaN Epitaxial Layers

1999 ◽  
Vol 589 ◽  
Author(s):  
V. Potin ◽  
G. Nouet ◽  
P. Ruterana ◽  
R.C. Pond

AbstractThe studied GaN layers are made of mosaYc grains rotated around the c-axis by angles in the range 0-25°. Using high-resolution electron microscopy, anisotropic elasticity calculations and image simulation, we have analyzed the atomic structure of the edge threading dislocations. Here, we present an analysis of the Σ = 7 boundary using circuit mapping in order to define the Burgers vectors of the primary and secondary dislocations. The atomic structure of the primary ones was found to exhibit 5/7 and 8 atom cycles.

1997 ◽  
Vol 482 ◽  
Author(s):  
S. Ruvimov ◽  
Z. Liliental-Weber ◽  
J. Washburn ◽  
H. Amano ◽  
I. Akasaki ◽  
...  

AbstractHigh resolution electron microscopy (HREM) was applied to study atomic structure of stacking faults, grain boundaries and interfaces in III-nitrides epitaxial layers grown by MOVPE on sapphire. Defects formed in GaN epitaxial layers grown by MOVPE were reviewed in comparison with those in MBE grown materials


Author(s):  
J.L. Batstone ◽  
J.M. Gibson ◽  
Alice.E. White ◽  
K.T. Short

High resolution electron microscopy (HREM) is a powerful tool for the determination of interface atomic structure. With the previous generation of HREM's of point-to-point resolution (rpp) >2.5Å, imaging of semiconductors in only <110> directions was possible. Useful imaging of other important zone axes became available with the advent of high voltage, high resolution microscopes with rpp <1.8Å, leading to a study of the NiSi2 interface. More recently, it was shown that images in <100>, <111> and <112> directions are easily obtainable from Si in the new medium voltage electron microscopes. We report here the examination of the important Si/Si02 interface with the use of a JEOL 4000EX HREM with rpp <1.8Å, in a <100> orientation. This represents a true structural image of this interface.


Author(s):  
Jean-Luc Rouvière ◽  
Alain Bourret

The possible structural transformations during the sample preparations and the sample observations are important issues in electron microscopy. Several publications of High Resolution Electron Microscopy (HREM) have reported that structural transformations and evaporation of the thin parts of a specimen could happen in the microscope. Diffusion and preferential etchings could also occur during the sample preparation.Here we report a structural transformation of a germanium Σ=13 (510) [001] tilt grain boundary that occurred in a medium-voltage electron microscopy (JEOL 400KV).Among the different (001) tilt grain boundaries whose atomic structures were entirely determined by High Resolution Electron Microscopy (Σ = 5(310), Σ = 13 (320), Σ = 13 (510), Σ = 65 (1130), Σ = 25 (710) and Σ = 41 (910), the Σ = 13 (510) interface is the most interesting. It exhibits two kinds of structures. One of them, the M-structure, has tetracoordinated covalent bonds and is periodic (fig. 1). The other, the U-structure, is also tetracoordinated but is not strictly periodic (fig. 2). It is composed of a periodically repeated constant part that separates variable cores where some atoms can have several stable positions. The M-structure has a mirror glide symmetry. At Scherzer defocus, its HREM images have characteristic groups of three big white dots that are distributed on alternatively facing right and left arcs (fig. 1). The (001) projection of the U-structure has an apparent mirror symmetry, the portions of good coincidence zones (“perfect crystal structure”) regularly separate the variable cores regions (fig. 2).


Sign in / Sign up

Export Citation Format

Share Document