Permeability, Swelling and Radionuclide Retardation Properties of Candidate Backfill Materials

1981 ◽  
Vol 6 ◽  
Author(s):  
J. H. Westsik ◽  
L. A. Bray ◽  
F. N. Hodges ◽  
E. J. Wheelwright

ABSTRACTA backfill placed between a nuclear waste canister and the host geology of a nuclear waste repository can impede the migration of water through the waste package and retard the movement of radionuclides into the geologic formation. Hydraulic conductivities and swelling pressures are being determined as functions of the density of the compacted backfill, temperature, radiation dose, hydraulic head and the chemical composition of the permeating fluid. Bentonite clays and bentonite/sand mixtures have received initial emphasis. Sodium bentonite and calcium bentonite samples compacted to a dry density of 2.1 g/cm3 had hydraulic conductivities in the range of 10−12 to 10−13 cm/s. In addition, batch distribution ratios (Rd) for Sr, Cs, Am, Np, I, U and Tc have been measured for a number of candidatebackfill materials. Both initial permeability and sorption studies have used a synthetic basaltic ground water.

Clay Minerals ◽  
2016 ◽  
Vol 51 (2) ◽  
pp. 145-160 ◽  
Author(s):  
R. Gómez-Espina ◽  
M.V. Villar

AbstractTwo 20-cm long columns of MX-80 bentonite compacted at a nominal dry density of 1.7 g/cm3with a water content of 17% were tested in thermo-hydraulic (TH) cells with the aim of simulating the conditions of a sealing material in a nuclear waste repository. On top of the columns a hydration surface simulated the host rock supplying groundwater and at the bottom a heater simulated the waste canister. The tests comprised two phases: a heating phase and a ‘heating + hydration’ phase. The temperatures at the ends of the columns were set during the last phase to 30°C at the top and 140°C at the bottom, respectively. The thermo-hydraulic treatment resulted in major changes along the bentonite columns. These changes led to significant gradients along the column with respect to the physical state (water content, dry density) and geochemistry of the bentonite. Smectite dissolution processes occurred. As a result, colloids were probably produced, particularly in the more hydrated areas. In the warmest part of the columns precipitation of carbonates took place, caused by their solubility decrease with temperature and the evaporation. The increase in water content reduced the ionic strength of the pore water in the more hydrated areas where species such as gypsum were dissolved. The solubilized ions were transported towards the bottom of the columns; Na+, Ca+, Mg2+and SO42−moved at a similar rate and K+and Cl−moved farther. These solubilized ions precipitated in the form of salts farther away along the columns as the test was longer. The TH treatment implied the loss of exchangeable positions in the smectite, particularly towards the heater. The cation exchange complex was also modified.


1981 ◽  
Vol 6 ◽  
Author(s):  
Sudesh K. Singh

ABSTRACTFourteen Canadian clays and clay admixtures were subjected to simulated nuclear waste repository environments. The present work is concerned with the montmorillonite-dominant materials only. The montmorillonite-dominant samples showed significant leaching on interaction with deionized water. On heating the samples at 200°C for 500 hours, montmorillomites lost intermicellar water completely and acquired cusp-like to cylindrical morphologies. The loss of water and the morphological changes in montmorillonites significantly altered the engineering characteristics. Permeability, shrinkage limits, compactability and shear strength varied in response to the dominant exchange cation in the structure of montmorillonites and the presence of other mineral components in the materials. The synthetic granite water reacted with montmorillonites and led to changes in chemical and mineralogical compositions, crystalline state and engineering properties.


2009 ◽  
Vol 46 (6) ◽  
pp. 1042-1054 ◽  
Author(s):  
Jan Sundberg ◽  
Pär-Erik Back ◽  
Rolf Christiansson ◽  
Harald Hökmark ◽  
Märta Ländell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document