hydraulic conditions
Recently Published Documents


TOTAL DOCUMENTS

435
(FIVE YEARS 120)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Vol 9 ◽  
Author(s):  
Reza Abdi ◽  
Ashley Rust ◽  
Jordyn M. Wolfand ◽  
Kristine Taniguchi-Quan ◽  
Katie Irving ◽  
...  

Anthropogenic development has adversely affected river habitat and species diversity in urban rivers, and existing habitats are jeopardized by future uncertainties in water resources management and climate. The Los Angeles River (LAR), for example, is a highly modified system that has been mostly channelized for flood control purposes, has altered hydrologic and hydraulic conditions, and is thermally altered (warmed), which severely limits the habitat suitability for cold water fish species. Efforts are currently underway to provide suitable environmental flows and improve channel hydraulic conditions, such as depth and velocity, for adult fish migration from the Pacific Ocean to upstream spawning areas. However, the thermal responses of restoration alternatives for resident and migrating cold water fish have not been fully investigated. Using a mechanistic model, we simulated the LAR’s water temperature under baseline conditions and future alternative restoration scenarios for migration of the native, anadromous steelhead trout in Southern California and the historically resident Santa Ana sucker. We considered three scenarios: 1) increasing roughness of the low-flow channel, 2) increasing the depth and width of the low-flow channel, and 3) allowing subsurface inflow to the river at a soft bottom reach in the LA downtown area. Our analysis indicates that the maximum weekly average temperature (MaxWAT) in the baseline condition was 28.9°C, suggesting that the current river temperatures would act as a limiting factor during the steelhead migration season and habitat for Santa Ana sucker. The MaxWAT dropped about 3%–28°C after applying all the considered scenarios at the study site, which is 3°C higher than the determined steelhead survival threshold. Our simulations suggest that without consideration of thermal restoration, restoring hydraulic conditions may be insufficient to support cold water fish migration or year-round resident native fish populations, particularly with potential river temperature increases due to climate change.


Irriga ◽  
2022 ◽  
Vol 1 (4) ◽  
pp. 739-747
Author(s):  
Madson Rafael Barbalho da Silva ◽  
Lívia Maria Cavalcante Silva ◽  
Ana Cláudia Davino dos Santos ◽  
Fabiano Simplicio Bezerra ◽  
Caio Sérgio Pereira de Araújo ◽  
...  

AVALIAÇÃO DE DESEMPENHO DO MICROASPERSOR EM LINHA LATERAL E SIMULAÇÃO MATEMÁTICA DE SEU GRADIENTE DE ENERGIA     MADSON RAFAEL BARBALHO DA SILVA1; LÍVIA MARIA CAVALCANTE SILVA1; ANA CLÁUDIA DAVINO DOS SANTOS1; FABIANO SIMPLICIO BEZERRA1; CAIO SÉRGIO PEREIRA DE ARAÚJO1 E MANASSÉS MESQUITA DA SILVA1   1 Departamento de Engenharia Agrícola, Universidade Federal Rural de Pernambuco, Dom Manuel de Medeiros, s/n, Dois Irmãos, 52171-900, Recife, Pernambuco, Brasil. E-mail:[email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected].     1 RESUMO   Objetivou-se avaliar o desempenho do microaspersor Agropolo modelo MC20 em diferentes condições hidráulicas, gerando informações para um melhor dimensionamento de sistemas de microirrigação e manejo da água em áreas irrigadas. A condução do projeto hidráulico para simulação do gradiente de energia em linhas laterais, considerou-se informações determinadas através da escolha de componentes do projeto. Foram extraídos do catálogo comercial do fabricante os pares de valores referentes a vazão e a pressão e, a partir destes, gerou-se a curva vazão-pressão, onde a simulação foi feita pelo Método Algébrico - Christiansen (MA) e Método Iterativo (SBS) – Back-Step. Para ambos métodos o microaspersor se comportou de maneira semelhante, quando submetido a condições sugeridas pelo fabricante, num espaçamento entre emissores de 5,2 m, usando tubos de polietilenos de diâmetro interno de 13 mm e uma pressão de serviço de 20 mca, admitindo uma variação de 10% da pressão. Foram calculados os coeficientes de uniformidade de pressão (CUp) e de vazão (CUq), ambos com valores superiores à 95%, demonstrando a excelência no desempenho do emissor.   Palavras-chave: hidráulica, modelagem matemática, coeficiente de descarga.     SILVA, M. R. B.; SILVA, L. M. C.; SANTOS, A. C. D.; BEZERRA, F. S.; ARAUJO, C. S. P.; SILVA, M. M. PERFORMANCE EVALUATION OF THE SIDE LINE MICROSPARENT AND MATHEMATICAL SIMULATION OF ITS ENERGY GRADIENT     2 ABSTRACT   The objective was to evaluate the performance of the Agropolo model MC20 microsprinkler under different hydraulic conditions, generating information for a better design of micro-irrigation systems and water management in irrigated areas. The conduction of the hydraulic project to simulate the energy gradient in lateral lines, considered information determined through the choice of project components. The pairs of values ​​referring to flow and pressure were extracted from the manufacturer's commercial catalog and, from these, the flow-pressure curve was generated, where the simulation was performed using the Algebraic Method - Christiansen (MA) and Iterative Method (SBS) – Back-Step. For both methods, the microsprinkler behaved similarly, when subjected to conditions suggested by the manufacturer, in a spacing between emitters of 5.2 m, using polyethylene tubes with an internal diameter of 13 mm and a working pressure of 20 mca, admitting a 10% pressure variation. The uniformity of pressure (CUp) and flow (CUq) coefficients were calculated, both with values ​​above 95%, demonstrating the excellence in the performance of the emitter.   Keywords: hydraulic, mathematical modeling, discharge coefficient.


Author(s):  
R. Salehi ◽  
S. Chaiprapat

Abstract A predictive model to estimate hydrogen sulfide (H2S) emission from sewers would offer engineers and asset managers the ability to evaluate the possible odor/corrosion problems during the design and operation of sewers to avoid in-sewer complications. This study aimed to model and forecast H2S emission from a gravity sewer, as a function of temperature and hydraulic conditions, without requiring prior knowledge of H2S emission mechanism. Two different adaptive neuro-fuzzy inference system (ANFIS) models using grid partitioning (GP) and subtractive clustering (SC) approaches were developed, validated, and tested. The ANFIS-GP model was constructed with two Gaussian membership functions for each input. For the development of the ANFIS-SC model, the MATLAB default values for clustering parameters were selected. Results clearly indicated that both the best ANFIS-GP and ANFIS-SC models produced smaller error compared with the multiple regression models and demonstrated a superior predictive performance on forecasting H2S emission with an excellent R2 value of >0.99. However, the ANFIS-GP model possessed fewer rules and parameters than the ANFIS-SC model. These findings validate the ANFIS-GP model as a potent tool for predicting H2S emission from gravity sewers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Staszek ◽  
Ł. Rudziński ◽  
G. Kwiatek

AbstractMultiplet analysis is based on the identification of seismic events with very similar waveforms which are used then to enhance seismological analysis e.g. by precise relocation of sources. In underground fluid injection conditions, it is a tool frequently used for imaging of subsurface fracture system. We identify over 150 repeatedly activated seismic sources within seismicity cluster induced by fluid injection in NW part of The Geysers geothermal field (California). Majority of multiple events (ME) occur along N–S oriented planar structure which we interpret as a fault plane. Remaining ME are distributed along structures interpreted as fractures, forming together a system of interconnected cracks enabling fluid migration. Temporal analysis reveals that during periods of relatively low fluid injection the proportion of ME to non-multiple events is higher than during periods of high injection. Moreover, ME which occur within the fault differ in activity rate and source properties from ME designating the fractures and non-multiple events. In this study we utilize observed differences between ME occurring within various structures and non-multiple events to describe hydraulic conditions within the reservoir. We show that spatial and temporal analysis of multiplets can be used for identification and characterization of dominant fluid migration paths.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012042
Author(s):  
Zheng Zhang ◽  
Jian Yu ◽  
Biaohua Cai ◽  
Longzhou Xiao ◽  
Yujing Zou

Abstract Due to long pipelines, complex hydraulic conditions, and high flow rate, Bidirectional Water Transfer System of ship is prone to producing Water Hammer Effect when the valve opens and closes, which has a great impact on the pipeline system. In this paper, Flowmaster software is used to simulate the Bidirectional Water Transfer System to study the system characteristics under different valve opening curves. The simulation results show that when the valve opens and closes, Bidirectional Water Transfer System will have a large pressure mutation. But the pressure changes of the stepped and the stepped curve opening curves are smaller and smoother than that of the linear opening curve. But the stepped and the stepped curve opening curves can’t eliminate the pressure and flow rate mutation when the valve opens and closes; In addition, the stepped and the stepped curve opening curves can effectively improve the phenomenon of water flowing out of the reservior, and effectively avoid the phenomenon of gas flowing into the reservior.


2021 ◽  
Vol 68 (1) ◽  
Author(s):  
Ming Li ◽  
Kaitang Hu ◽  
Jin Wang

AbstractFlocculation is an important method to treat paper manufacturing wastewater. Coagulants and flocculants added to wastewater facilitate the aggregation and sedimentation of various particles in the wastewater and lead to the formation of floc networks which can be easily removed using physical methods. The goal of this paper is to determine the optimal hydraulic conditions using machine learning in order to enable efficient flocculation and improve performance during the treatment of deinking wastewater. Experiments using polymerized aluminum chloride as flocculant to treat deinking wastewater were carried out. Based on the orthogonal array test, 16 different combinations of hydraulic conditions were chosen to investigate the performance of flocculation, which was indicated by the turbidity of the solution after treatment. To develop a model representing the relationship between the hydraulic conditions and the performance of wastewater treatment, the machine learning methods, support vector regression and Gaussian process regression, were compared, whereby the support vector regression method was chosen. According to the fitness function derived from the support vector regression model, a genetic algorithm was applied to evaluate the optimal hydraulic conditions. Based on the optimal conditions determined by the genetic algorithm and real-life experience, a set of hydraulic conditions were implemented experimentally. After treatment under higher stirring speed at 120 rpm for 1 min and lower stirring speed at 20 rpm for 5 min at a temperature of 20 °C, the turbidity of deinking wastewater was measured as 1 NTU. The turbidity reduction was as high as 99.6%, which indicated good performance of the deinking wastewater treatment.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3168
Author(s):  
Marek Sokáč ◽  
Yvetta Velísková

Experiments focused on pollution transport and dispersion phenomena in conditions of low flow (low water depth and velocities) in sewers with bed sediment and deposits are presented. Such conditions occur very often in sewer pipes during dry weather flows. Experiments were performed in laboratory conditions. To simulate real hydraulic conditions in sewer pipes, sand of fraction 0.6–1.2 mm was placed on the bottom of the pipe. In total, we performed 23 experiments with 4 different thicknesses of sand sediment layers. The first scenario is without sediment, the second is with sediment filling 3.4% of the pipe diameter (sediment layer thickness = 8.5 mm), the third scenario represents sediment filling 10% of the pipe diameter (sediment layer thickness = 25 mm) and sediment fills 14% of the pipe diameter (sediment layer thickness = 35 mm) in the last scenario. For each thickness of the sediment layer, a set of tracer experiments with different flow rates was performed. The discharge ranges were from (0.14–2.5)·10−3 m3·s−1, corresponding to the range of Reynolds number 500–18,000. Results show that in the hydraulic conditions of a circular sewer pipe with the occurrence of sediment and deposits, the value of the longitudinal dispersion coefficient Dx decreases almost linearly with decrease of the flow rate (also with Reynolds number) to a certain limit (inflexion point), which is individual for each particular sediment thickness. Below this limit the value of the dispersion coefficient starts to rise again, together with increasing asymmetricity of the concentration distribution in time, caused by transient (dead) storage zones.


2021 ◽  
Vol 1203 (3) ◽  
pp. 032082
Author(s):  
Miroslav Broucek ◽  
Ladislav Satrapa ◽  
Martin Kralik ◽  
Jiri Soucek

Abstract The paper focuses on the analysis of hydraulic conditions in the proximity of the intake part of high shaft spillways equipped with pro-vortex vanes and discusses recent enhancements in modelling of the shaft spillways and compares the acquired results of the performance of the spillway after complete removal or rehabilitation of the vanes in context of capacity and overall hydraulic conditions. Increasing requirements on safety of embankment dams during floods with respect to anticipated effect of the climate change scenarios on parameters of design floods demand further assessment of capabilities of outlet structures to meet the updated needs. Such dam safety assessments often conclude in the need of designing additional measures to improve existing structures. Despite different approach to the evaluation of the uncertainties and subsequent risk assessment the goal of improving safety of large dams remains consistent in the effort of all developed countries. Adjustments of the intake part of shaft spillways can present a valid design option for increasing capacity of the complex spillway/tunnel structure if supported by solid analysis of hydraulic conditions inside these structures. As the governing idea of the pro-vortex vanes is to ensure spiral flow inside the shaft and to minimize the pressure fluctuations the paper presents results from physical model of several designs of the pro-vortex vanes which approximated possible adjustment of tower like shaft spillway of existing large dam in Czech Republic and also results from CFD modelling illustrating the importance of combination of both modelling approaches. For the CFD part, different turbulence models are discussed.


Sign in / Sign up

Export Citation Format

Share Document