Tunable Porous Silicon Photonic Band Gap Structures

2000 ◽  
Vol 637 ◽  
Author(s):  
J. Eduardo Lugo ◽  
Herman A. Lopez ◽  
Selena Chan ◽  
Philippe M. Fauchet

AbstractThe tuning of one-dimensional photonic band gap structures based on porous silicon will be presented. The photonic structures are prepared by applying a periodic pulse of current density to form alternating high and low porosity layers. The width and position of the photonic bandgap are determined by the dielectric function of each layer, which depends on porosity, and their thickness. In this work we show that by controlling the oxidation of the porous silicon structures, it is possible to tune the photonic bandgap towards shorter wavelengths. The formation of silicon dioxide during oxidation causes a reduction of the refractive index, which induces the blue shift. The photonic band gap is determined experimentally by taking the total reflection of the structures. In order to understand the tuning of the photonic band gap, we developed a geometrical model using the effective medium approximation to calculate the dielectric function of each of the oxidized porous silicon layers. The two key parameters are the porosity and the parameter β, defined as the ratio between the silicon dioxide thickness and the pore radius before oxidation. Choosing the parameter β, to fit the experimental photonic band gap of the oxidized structures, we extract the fraction of oxide that is present. For example, the measured 240 nm blue shift of a photonic bandgap that was centered at 1.7 microns corresponds to the transformation of 30% of the structure into silicon dioxide. A similar approach can be used for oxidized two-dimensional porous silicon photonic structures.

2020 ◽  
Vol 129 (7) ◽  
pp. 909
Author(s):  
N. Zhdanova ◽  
A. Pakhomov ◽  
S. Rodionov ◽  
Yu. Strokova ◽  
S. Svyakhovskiy ◽  
...  

Spectral properties of enhanced-green uorescent protein and monomeric red uorescent protein in porous photonic structures have been studied. The uorescent proteins were successfully inЛtrated into porous silicon photonic structures with dirent positions of the photonic band gap in visible spectral range. The intensity of uorescence is enhanced in the spectral regions of high photonic density of states. The possibility to control the uorescence spectra by the structure with the photonic band gap is demonstrated. Keywords: photonic crystals, porous silicon, uorescent proteins, photonic band gap.


2000 ◽  
Vol 77 (23) ◽  
pp. 3704-3706 ◽  
Author(s):  
Herman A. Lopez ◽  
Philippe M. Fauchet

2007 ◽  
Vol 280-283 ◽  
pp. 533-536
Author(s):  
Hai Qing Yin ◽  
Soshu Kirihara ◽  
Yoshinari Miyamoto

The three-dimensional (3D) photonic band gap material is a material that there exists a full photonic band gap in which waves are forbidden to propagate whatever the polarization or the direction of propagation. In order to obtain photonic bandgap in lower range, we focus on the fabrication of PBG materials of diamond structure with TiO2 powder mixed with SiO2. The inverse epoxy structure with periodic diamond lattices in millimeter order has been fabricated by stereolithographic rapid prototyping. TiO2 slurry was filled into the epoxy structure and then cold isostatic pressing was applied. After sintering at 700K for 5hrs, the epoxy was burnt out and the designed structure was maintained perfectly. The calculated band diagram shows that there exists an absolute photonic band gap for all wave vectors. The measurement of transmission from 10 to 20 GHz in <100> direction shows that a complete band gap is formed at about 14.7-18.5 GHz. The magnitude of the maximum attenuation is as large as 30 dB at 17 GHz.


2007 ◽  
Vol 74 ◽  
pp. 319-340 ◽  
Author(s):  
M. A. El-Dahshory ◽  
Ahmed M. Attiya ◽  
Essam A. Hashish

2002 ◽  
Vol 722 ◽  
Author(s):  
H. M. van Driel ◽  
S.W. Leonard ◽  
J. Schilling ◽  
R.B. Wehrspohn

AbstractWe demonstrate two ways in which the optical band-gap of a 2-D macroporous silicon photonic crystal can be tuned. In the first method the temperature dependence of the refractive index of an infiltrated nematic liquid crystal is used to tune the high frequency edge of the photonic band gap by up to 70 nm as the temperature is increased from 35 to 59°C. In a second technique we have optically pumped the silicon backbone using 150 fs, 800 nm pulses, injecting high density electron hole pairs. Through the induced changes to the dielectric constant via the Drude contribution we have observed shifts up to 30 nm of the high frequency edge of a band-gap.


1999 ◽  
Author(s):  
Marco Centini ◽  
Michael Scalora ◽  
Concita Sibilia ◽  
Mario Bertolotti ◽  
Mark J. Bloemer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document