Distinguishing negatively-charged and highly conductive dislocations in gallium nitride using scanning Kelvin probe and conductive atomic force microscopy

2002 ◽  
Vol 743 ◽  
Author(s):  
Blake S. Simpkins ◽  
Edward T. Yu ◽  
Patrick Waltereit ◽  
James S. Speck

ABSTRACTScanning Kelvin probe microscopy (SKPM) and conductive atomic force microscopy (C-AFM) are used to image surfaces of GaN grown by molecular beam epitaxy (MBE). Numerical simulations are used to assist in the interpretation of SKPM images. Detailed analysis of the same area using both techniques allows imaging of surface potential variations arising from the presence of negatively charged dislocations and dislocation-related current leakage paths. Correlations between the charge state of dislocations, conductivity of leakage current paths, and possibly dislocation type can thereby be established. Approximately 25% of the leakage paths appear to be spatially correlated with negatively charged dislocation features. This is approximately the level of correlation expected due to spatial overlap of randomly distributed, distinct features of the size observed, suggesting that the negatively charged dislocations are distinct from those responsible for localized leakage paths found in GaN. The effects of charged dislocation networks on the local potential profile is modeled and discussed.

2020 ◽  
Vol 49 (6) ◽  
pp. 3907-3912
Author(s):  
Kun Cao ◽  
Wanqi Jie ◽  
Gangqiang Zha ◽  
Jiangpeng Dong ◽  
Ruiqi Hu ◽  
...  

2017 ◽  
Vol 5 (46) ◽  
pp. 12112-12120 ◽  
Author(s):  
Mingxuan Guo ◽  
Fumin Li ◽  
Lanyu Ling ◽  
Chong Chen

The effect of the incorporated CdS on the local optoelectronic properties of CH3NH3PbI3:CdS bulk heterojunction (BHJ) perovskite solar cells (PSCs) are studied using Kelvin probe force microscopy (KPFM), conductive atomic force microscopy (c-AFM) and electrochemical impedance spectroscopy (EIS).


2008 ◽  
Vol 93 (2) ◽  
pp. 022107 ◽  
Author(s):  
A. Lochthofen ◽  
W. Mertin ◽  
G. Bacher ◽  
L. Hoeppel ◽  
S. Bader ◽  
...  

2001 ◽  
Vol 680 ◽  
Author(s):  
G. Koley ◽  
M. G. Spencer

ABSTRACTScanning Kelvin probe microscopy (SKPM) technique operated in feedback mode has been used to characterize GaN (unintentionally n-type doped, n+ doped and semi-insulating), and Al0.35Ga0.65N/GaN heterostructures (with varying Al0.35Ga0.65N thickness) grown by metalorganic chemical vapor deposition and molecular beam epitaxy. SKPM was used to measure the surface potential on these materials. The measurement technique was calibrated using metal calibration samples of Pt, Au, Ni and Al. The BSBH for n-doped GaN was measured to be 0.7 eV, which is in good agreement with values reported in the literature. Growth features such as dislocations present on the surfaces of III-nitrides were also investigated for their electrical properties using SKPM and non-contact mode atomic force microscopy, simultaneously. The dislocations have been found to be negatively charged for GaN as well as Al0.35Ga0.65N/GaN heterostructure samples.


2017 ◽  
Vol 8 ◽  
pp. 579-589 ◽  
Author(s):  
Hanaul Noh ◽  
Alfredo J Diaz ◽  
Santiago D Solares

Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, and is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.


Sign in / Sign up

Export Citation Format

Share Document