Measurement of Work of Adhesion on Wafers for Direct Bonding

2003 ◽  
Vol 782 ◽  
Author(s):  
Kevin T. Turner ◽  
S. Mark Spearing

ABSTRACTThe displacement loaded double cantilever beam (DCB), often referred to as the blade-insertion test or crack-opening method by the wafer bonding community, has become a common method for evaluating the work of adhesion of bonded wafer pairs. The test, while easy to perform, often yields results with large scatter and questionable accuracy. The mechanics of the specimen are investigated in detail in the current work. Expressions that demonstrate how wafer bow may lead to residual stresses that result in large errors in the calculated work of adhesion are developed. A three-dimensional finite element model is used to show that due to the circular wafer geometry and silicon anisotropy there is a large variation of the strain energy release rate across a straight crack front. The model is used to predict the actual crack front shape and shows good agreement with experiments. The results of the finite element simulations are compared to the traditional expression used for data reduction and implications of the model highlighted.

2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2013 ◽  
Vol 336-338 ◽  
pp. 760-763
Author(s):  
Hui Yue

A short explanation of the finite element method as a powerful tool for mathematical modeling is provided, and an application using constitutive modeling of the behavior of ligaments is introduced. Few possible explanations of the role of water in ligament function are extracted from two dimensional finite element models of a classical ligament. The modeling is extended to a three dimensional finite element model for the human anterior cruciate ligament. Simulation of ligament force in pitching motion of basketball player is studied in this paper.


2006 ◽  
Vol 21 (4) ◽  
pp. 337-344 ◽  
Author(s):  
Hendrik Schmidt ◽  
Frank Heuer ◽  
Ulrich Simon ◽  
Annette Kettler ◽  
Antonius Rohlmann ◽  
...  

Author(s):  
O. E. C. Prizeman ◽  
V. Sarhosis ◽  
A. M. D’Alri ◽  
C. J. Whitman ◽  
G. Muratore

Caerphilly Castle (1268-70) is the first concentric castle in Britain and the second largest in the UK. The dramatic inclination of its ruinous south west tower has been noted since 1539. Comparing data from historical surveys and a terrestrial laser scan undertaken in 2015, this paper seeks to review evidence for the long-term stability of the tower. Digital documentation and archival research by architects is collated to provide data for structural analysis by engineers. A terrestrial laser scan was used to create a detailed three dimensional finite element model to enable structural analysis of the current shape of the tower made by tetrahedral elements. An automated strategy has been implemented for the transformation of the complex three dimensional point cloud into a three dimensional finite element model. Numerical analysis has been carried out aiming at understanding the main structural weaknesses of the tower in its present condition. Comparisons of four sets of data: 1539, 1830, 1870 and 2015 enabled us to determine change albeit between very different methods of measurement.


Sign in / Sign up

Export Citation Format

Share Document