Potential Usage of Energetic Nano-sized Powders for Combustion and Rocket Propulsion

2003 ◽  
Vol 800 ◽  
Author(s):  
Kenneth K. Kuo ◽  
Grant A. Risha ◽  
Brian J. Evans ◽  
Eric Boyer

ABSTRACTNano-sized energetic metals and boron particles (with dimensions less than 100 nanometers) possess desirable combustion characteristics such as high heats of combustion and fast energy release rates. Because of their capability to enhance performance, various metals have been introduced in solid propellant formulations, gel propellants, and solid fuels. There are many advantages of incorporating nano-sized materials into fuels and propellants, such as: 1) shortened ignition delay; 2) shortened burn times, resulting in more complete combustion in volume-limited propulsion systems; 3) enhanced heat-transfer rates from higher specific surface area; 4) greater flexibility in designing new energetic fuel/propellants with desirable physical properties; 5) nano-particles can act as a gelling agent to replace inert or low-energy gellants; 6) nano-sized particles can also be dispersed into high-temperature zone for direct oxidation reaction and rapid energy release, and 7) enhanced propulsive performance with increased density impulse. In view of these advantages, numerous techniques have been developed for synthesizing nano-particles of different sizes and shapes. To reduce any possible hazards associated with the handling of nano-sized particles as well as unwanted particle oxidation, various passivation procedures have been developed. Some of these coating materials could enhance the ignition and combustion behavior, others could increase the compatibility of the particles with the surrounding material. Many researchers have been actively engaged in the characterization of the ignition and combustion behavior of nano-sized particles as well as the assessment of performance enhancement of propellants and fuels containing energetic nano-particles. For example, solid fuels could contain a significant percentage of nano-sized particles to increase the mass-burning rate in hybrid rocket motors, the regression rate of solid propellants can be increased by several times when nano-sized particles are incorporated into the formulation. Specifically, hybrid motor data showed that the addition of 13% energetic aluminum powders can increase the linear regression rate of solid HTPB-based fuel by 123% in comparison to the non-aluminized HTPB fuel at a moderate gaseous oxidizer mass flow rate. Strand burner studies of two identical solid propellant formulations (one with 18% regular aluminum powder and the other with 9% aluminum replaced by Alex® powder) showed that nano-sized particles can increase the linear burning rate of solid propellants by 100%. In addition to solid fuels and propellants, spray combustion of bipropellants has been conducted using gel propellants impregnated with nano-sized boron particles as the fuel in a rocket engine. High combustion efficiencies were obtained from burning nano-sized boron particles contained in a non-toxic liquid-fuel spray. Materials characterization such as chemical analyses to determine the active aluminum content, density measurements, and imaging using an electron microscope have been performed on both neat nano-sized particles and mixtures containing the energetic materials. In general, using energetic nano-sized particles as a new design parameter, propulsion performance of future propellants and fuels can be greatly enhanced.

2018 ◽  
Vol 194 ◽  
pp. 01055
Author(s):  
Alexander Korotkikh ◽  
Ivan Sorokin ◽  
Ekaterina Selikhova

Boron and its compounds are among the most promising metal fuel components to be used in solid propellants for solid fuel rocket engine and ramjet engine. Papers studying boron oxidation mostly focus on two areas: oxidation of single particles and powders of boron, as well as boron-containing composite solid propellants. This paper presents the results of an experimental study of the ignition and combustion of the high-energy material samples based on ammonium perchlorate, ammonium nitrate, and an energetic combustible binder. Powders of aluminum, amorphous boron and aluminum diboride, obtained by the SHS method, were used as the metallic fuels. It was found that the use of aluminum diboride in the solid propellant composition makes it possible to reduce the ignition delay time by 1.7–2.2 times and significantly increase the burning rate of the sample (by 4.8 times) as compared to the solid propellant containing aluminum powder. The use of amorphous boron in the solid propellant composition leads to a decrease in the ignition delay time of the sample by a factor of 2.2–2.8 due to high chemical activity and a difference in the oxidation mechanism of boron particles. The burning rate of this sample does not increase significantly.


Author(s):  
V.A. Poryazov ◽  
◽  
K.M. Moiseeva ◽  
A.Yu. Krainov ◽  
◽  
...  

A problem of combustion of the composite solid propellants containing various powders of metals and non-metals is relevant in terms of studying the effect of various compositions of powders on the linear rate of propellant combustion. One of the lines of research is to determine the effect of the addition of a boron powder on the burning rate of a composite solid propellant. This work presents the results of numerical simulation of combustion of the composite solid propellant containing bidispersed boron powder. Physical and mathematical formulation of the problem is based on the approaches of the mechanics of two-phase reactive media. To determine the linear burning rate, the Hermance model of combustion of composite solid propellants is used, based on the assumption that the burning rate is determined by mass fluxes of the components outgoing from the propellant surface. The solution is performed numerically using the breakdown of an arbitrary discontinuity algorithm. The dependences of the linear burning rate of the composite solid propellant on the dispersion of the boron particles and gas pressure above the propellant surface are obtained. It is shown that the burning rate of the composite solid propellant with bidispersed boron powder changes in contrast to that of the composite solid propellant with monodispersed powder. This fact proves that the powder dispersion should be taken into account when solving the problems of combustion of the composite solid propellants containing reactive particles.


2018 ◽  
Vol 194 ◽  
pp. 410-418 ◽  
Author(s):  
Hatem Belal ◽  
Chang W. Han ◽  
Ibrahim E. Gunduz ◽  
Volkan Ortalan ◽  
Steven F. Son

2014 ◽  
Vol 884-885 ◽  
pp. 87-90 ◽  
Author(s):  
Zhao Qin ◽  
Jiang Wu ◽  
Rui Qi Shen ◽  
Ying Hua Ye ◽  
Li Zhi Wu

This paper describes experimental work on laser-controlled combustion of solid propellants. Combustion of AP/HTPB, including ignition, combustion, extinction and re-ignition could be controlled by CO2 laser irradiation at the back pressure of 0.1, 0.3 and 0.5 MPa in nitrogen. Burning rate of propellant increased linearly with the increasing of laser power density. Vieilles law was used here to check pressure effect to burning rate, pressure exponent under different power density (except 0.5 MW/m2) are very close to 0.17.


2008 ◽  
Vol 112 (1138) ◽  
pp. 725-732
Author(s):  
H. G. Darabkhanid ◽  
N. S. Mehdizadeh

Abstract The method of metal embedding is widely employed in solid propellant motors with end-burning configuration, thereby significantly improving the burning rate of the propellants. In this study, the cylindrical foil embedding method is applied to double-base solid propellant, as a new method, and the effects of the type and thickness of the foil on the burning surface, as well as the burning rate, are experimentally investigated. It is shown that by using the foil embedding method, the burning characteristics of solid propellants can be improved. Results have been compared to some available data. To the best of the author’s knowledge there are no published data available on this method.


2016 ◽  
Vol 18 (3) ◽  
pp. 161 ◽  
Author(s):  
Alon Gany

Combustion of aluminized solid propellants exhibits phenomena associated with accumulation, agglomeration, ignition, and combustion of micro and nano-size aluminum particles. In general, agglomeration is an undesirable phenomenon, as it turns small particles into relatively large agglomerates, each containing many original particles, resulting in long combustion times which may lead to incomplete reaction, reduced jet momentum, and enhanced slag formation which adds parasite mass and may damage the motor insulation. This article presents a physical mechanism explaining the agglomeration process, revealing that small particles tend to agglomerate more than large particles. In addition, it suggests ways to reduce agglomeration of the aluminum particles via nano-coatings generating reactive heating and promoting ignition.


2011 ◽  
Vol 20 (6) ◽  
pp. 1259-1268 ◽  
Author(s):  
David A. de Koninck ◽  
Danick Briand ◽  
Laurent Guillot ◽  
U. Bley ◽  
Volker Gass ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document