scholarly journals Micro and Nano Scale Phenomena of Aluminum Agglomeration During Solid Propellant Combustion

2016 ◽  
Vol 18 (3) ◽  
pp. 161 ◽  
Author(s):  
Alon Gany

Combustion of aluminized solid propellants exhibits phenomena associated with accumulation, agglomeration, ignition, and combustion of micro and nano-size aluminum particles. In general, agglomeration is an undesirable phenomenon, as it turns small particles into relatively large agglomerates, each containing many original particles, resulting in long combustion times which may lead to incomplete reaction, reduced jet momentum, and enhanced slag formation which adds parasite mass and may damage the motor insulation. This article presents a physical mechanism explaining the agglomeration process, revealing that small particles tend to agglomerate more than large particles. In addition, it suggests ways to reduce agglomeration of the aluminum particles via nano-coatings generating reactive heating and promoting ignition.

2003 ◽  
Vol 800 ◽  
Author(s):  
Kenneth K. Kuo ◽  
Grant A. Risha ◽  
Brian J. Evans ◽  
Eric Boyer

ABSTRACTNano-sized energetic metals and boron particles (with dimensions less than 100 nanometers) possess desirable combustion characteristics such as high heats of combustion and fast energy release rates. Because of their capability to enhance performance, various metals have been introduced in solid propellant formulations, gel propellants, and solid fuels. There are many advantages of incorporating nano-sized materials into fuels and propellants, such as: 1) shortened ignition delay; 2) shortened burn times, resulting in more complete combustion in volume-limited propulsion systems; 3) enhanced heat-transfer rates from higher specific surface area; 4) greater flexibility in designing new energetic fuel/propellants with desirable physical properties; 5) nano-particles can act as a gelling agent to replace inert or low-energy gellants; 6) nano-sized particles can also be dispersed into high-temperature zone for direct oxidation reaction and rapid energy release, and 7) enhanced propulsive performance with increased density impulse. In view of these advantages, numerous techniques have been developed for synthesizing nano-particles of different sizes and shapes. To reduce any possible hazards associated with the handling of nano-sized particles as well as unwanted particle oxidation, various passivation procedures have been developed. Some of these coating materials could enhance the ignition and combustion behavior, others could increase the compatibility of the particles with the surrounding material. Many researchers have been actively engaged in the characterization of the ignition and combustion behavior of nano-sized particles as well as the assessment of performance enhancement of propellants and fuels containing energetic nano-particles. For example, solid fuels could contain a significant percentage of nano-sized particles to increase the mass-burning rate in hybrid rocket motors, the regression rate of solid propellants can be increased by several times when nano-sized particles are incorporated into the formulation. Specifically, hybrid motor data showed that the addition of 13% energetic aluminum powders can increase the linear regression rate of solid HTPB-based fuel by 123% in comparison to the non-aluminized HTPB fuel at a moderate gaseous oxidizer mass flow rate. Strand burner studies of two identical solid propellant formulations (one with 18% regular aluminum powder and the other with 9% aluminum replaced by Alex® powder) showed that nano-sized particles can increase the linear burning rate of solid propellants by 100%. In addition to solid fuels and propellants, spray combustion of bipropellants has been conducted using gel propellants impregnated with nano-sized boron particles as the fuel in a rocket engine. High combustion efficiencies were obtained from burning nano-sized boron particles contained in a non-toxic liquid-fuel spray. Materials characterization such as chemical analyses to determine the active aluminum content, density measurements, and imaging using an electron microscope have been performed on both neat nano-sized particles and mixtures containing the energetic materials. In general, using energetic nano-sized particles as a new design parameter, propulsion performance of future propellants and fuels can be greatly enhanced.


2018 ◽  
Vol 194 ◽  
pp. 01055
Author(s):  
Alexander Korotkikh ◽  
Ivan Sorokin ◽  
Ekaterina Selikhova

Boron and its compounds are among the most promising metal fuel components to be used in solid propellants for solid fuel rocket engine and ramjet engine. Papers studying boron oxidation mostly focus on two areas: oxidation of single particles and powders of boron, as well as boron-containing composite solid propellants. This paper presents the results of an experimental study of the ignition and combustion of the high-energy material samples based on ammonium perchlorate, ammonium nitrate, and an energetic combustible binder. Powders of aluminum, amorphous boron and aluminum diboride, obtained by the SHS method, were used as the metallic fuels. It was found that the use of aluminum diboride in the solid propellant composition makes it possible to reduce the ignition delay time by 1.7–2.2 times and significantly increase the burning rate of the sample (by 4.8 times) as compared to the solid propellant containing aluminum powder. The use of amorphous boron in the solid propellant composition leads to a decrease in the ignition delay time of the sample by a factor of 2.2–2.8 due to high chemical activity and a difference in the oxidation mechanism of boron particles. The burning rate of this sample does not increase significantly.


2021 ◽  
pp. 159877
Author(s):  
Weiqiang Tang ◽  
Rongjie Yang ◽  
Jinghui Hu ◽  
Jianmin Li ◽  
Fei Xiao ◽  
...  

1989 ◽  
Vol 171 ◽  
Author(s):  
Dale W. Schaefer ◽  
James E. Mark ◽  
David Mccarthy ◽  
Li Jian ◽  
C. -C. Sun ◽  
...  

ABSTRACTThe structure of several classes of silica/siloxane molecular composites is investigated using small-angle x-ray and neutron scattering. These filled elastomers can be prepared through different synthethic protocols leading to a range of fillers including particulates with both rough and smooth surfaces, particulates with dispersed interfaces, and polymeric networks. We also find examples of bicontinuous filler phases that we attribute to phase separation via spinodal decomposition. In-situ kinetic studies of particulate fillers show that the precipitate does not develop by conventional nucleation-and-growth. We see no evidence of growth by ripening whereby large particles grow by consumption of small particles. Rather, there appears to be a limiting size set by the elastomer network itself. Phase separation develops by continuous nucleation of particles and subsequent growth to the limiting size. We also briefly report studies of polymer-toughened glasses. In this case, we find no obvious correlation between organic content and structure.


Author(s):  
Jonathan L. Height ◽  
Burl A. Donaldson ◽  
Walter Gill ◽  
Christian G. Parigger

The study of aluminum particle ignition in an open atmosphere propellant burn is of particular interest when considering accident scenarios for rockets carrying high-value payloads. This study investigates the temperature of an open atmosphere Atlas V solid propellant burn as a function of height from the burning surface. Two instruments were used to infer this temperature: a two-color pyrometer and a spectrometer. The spectra were fitted to a model of energy states for aluminum monoxide. The temperature which provided the best match between the model and data was taken as the reaction temperature. Emissions above 30 inches from the surface of the propellant were not sufficiently strong for data reduction, perhaps obscured by the alumina smoke cloud. The temperature distribution in the plume increased slightly with distance from the burning surface, presumably indicating the delay in ignition and heat release from the larger aluminum particles in the propellant. The pyrometer and spectrometer results were found to be in excellent agreement indicating plume temperatures in the range of 2300K to 3000K.


2021 ◽  
Vol 6 (2) ◽  
pp. 17-23
Author(s):  
Valeriy I. Pinakov ◽  
Konstantin V. Kulik ◽  
Boris E. Grinberg

Experiments on the rotating in the air cones with vertex angle β = 120º and flat disc shown that on frequencies Ω ≥ 2.5 hertz exists a qualitative difference in movement for the particles with diameters d ≈ 1 mm and d ≈ 0.1 mm. The particles with d ≈ 0.1 mm move in the near-surface region, the particles with d ≈ 1 mm jump up to 3 cm. Comparison of the spherical and aspheric (ellipsoid with axles d, d and 4 /3 d) particles' kinematics moving shown the inevitability of the large particles jump occurrence. Large particles come to self-oscillation regime by reason of periodically appearance of the Magnus force. Small particles are localized in the velocity layer


2021 ◽  
Vol 57 (3) ◽  
pp. 308-313
Author(s):  
V. A. Arkhipov ◽  
S. A. Basalaev ◽  
V. T. Kuznetsov ◽  
V. A. Poryazov ◽  
A. V. Fedorychev

Sign in / Sign up

Export Citation Format

Share Document