Ca2RuO4Thin Film Growth by Pulsed Laser Deposition

2004 ◽  
Vol 819 ◽  
Author(s):  
Xu Wang ◽  
Yan Xin ◽  
Hanoh Lee ◽  
Patricia A. Stampe ◽  
Robin J. Kennedy ◽  
...  

AbstractBulk Ca2RuO4 is an antiferromagnetic Mott insulator with the metal-insulator transition above room temperature, and the Neel temperature at 113 K. There is strong coupling between crystal structures and magnetic, electronic phase transitions in this system. It exhibits high sensitivity to chemical doping and pressure that makes it very interesting material to study. We have epitaxially grown Ca2RuO4 thin films on LaAlO3 substrates by pulsed laser deposition technique. Growth conditions such as substrate temperature and O2 pressure were systematically varied in order to achieve high quality single-phase film. Crystalline quality and orientation of these films were characterized by X-ray diffractometry. Microstructure of the thin films was examined by transmission electron microscopy. The electrical transport properties were also measured and compared with bulk single crystal.

1994 ◽  
Vol 361 ◽  
Author(s):  
William Jo ◽  
T.W. Noh

ABSTRACTUsing pulsed laser deposition, Bi4Ti3O12 thin films were grown on (0001) and (1102) surfaces of Al2O3. Substrate temperature from 700 to 800 °C and oxygen pressure from 50 to 1000 mtorr were varied, and their effects on Bi4Ti3O12 film growth behavior was investigated. Only for a narrow range of deposition parameters, can highly oriented Bi4Ti3O12(104) films be grown on Al2O3(0001). Further, epitaxial BTO(004) films can be grown on Al2O3(1102). The growth behavior of preferential BTO film orientations can be explained in terms of atomic arrangements in the Bi4Ti3O12 and the Al2O3 planes.


Sign in / Sign up

Export Citation Format

Share Document