thermal annealing
Recently Published Documents


TOTAL DOCUMENTS

6829
(FIVE YEARS 813)

H-INDEX

88
(FIVE YEARS 10)

2022 ◽  
Vol 579 ◽  
pp. 121375
Author(s):  
A.R. Zanatta ◽  
F.G. Echeverrigaray ◽  
F. Cemin ◽  
F. Alvarez

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 124
Author(s):  
Min-Kyeong Kim ◽  
Yang-Kyu Choi ◽  
Jun-Young Park

Device guidelines for reducing power with punch-through current annealing in gate-all-around (GAA) FETs were investigated based on three-dimensional (3D) simulations. We studied and compared how different geometric dimensions and materials of GAA FETs impact heat management when down-scaling. In order to maximize power efficiency during electro-thermal annealing (ETA), applying gate module engineering was more suitable than engineering the isolation or source drain modules.


Author(s):  
Kesuke YAMANE ◽  
Ryo Futamura ◽  
Shigeto Genjo ◽  
Daiki Hamamoto ◽  
Yuito Maki ◽  
...  

Abstract This study presents the positive effects of proton/electron irradiation on the crystallinity of GaP-based dilute nitride alloys. It is found that proton/electron irradiation followed by rapid thermal annealing enhances the PL peak intensity of GaPN alloys, whereas major photovoltaic III-V materials such as GaAs and InGaP degrade their crystal quality by irradiation damage. Atomic force microscopy and transmission electron microscopy reveal no degradation of structural defects. GaAsPN solar cell test devices are then fabricated. Results show that the conversion efficiency increases by proton/electron irradiation, which is mainly caused by an increase in the short-circuit current.


Author(s):  
hironori okumura ◽  
Yasuhiro Watanabe ◽  
Tomohiko Shibata ◽  
Kohei Yoshizawa ◽  
Akira Uedono ◽  
...  

Abstract We report on impurity diffusion in ion implanted AlN layers after thermal annealing. Silicon, tin, germanium, and magnesium ions were implanted into single-crystal AlN layers grown on sapphire substrates. By annealing at 1600oC, silicon and magnesium atoms were diffused in the AlN layer, while less change was observed in the distribution of germanium atoms. Silicon implantation introduced vacancy-related defects. By annealing at temperatures over 1300oC, the vacancy-related defects were reduced, while oxygen atoms were diffused from the substrate due to sapphire decomposition. We reproducibly achieved silicon-implanted AlN layers with electrical conductance by controlling the annealing temperature and distribution of silicon and oxygen concentrations.


Sign in / Sign up

Export Citation Format

Share Document