Chemistry of Water Collected from an Unventilated Drift, Yucca Mountain, Nevada

2006 ◽  
Vol 985 ◽  
Author(s):  
Brian D Marshall ◽  
Thomas A. Oliver ◽  
Zell E. Peterman

AbstractWater samples (referred to as puddle water samples) were collected from the surfaces of a conveyor belt and plastic sheeting in the unventilated portion of the Enhanced Characterization of the Repository Block (ECRB) Cross Drift in 2003 and 2005 at Yucca Mountain, Nevada. The chemistry of these puddle water samples is very different than that of pore water samples from borehole cores in the same region of the Cross Drift or than seepage water samples collected from the Exploratory Studies Facility tunnel in 2005. The origin of the puddle water is condensation on surfaces of introduced materials and its chemistry is dominated by components of the introduced materials. Large CO2 concentrations may be indicative of localized chemical conditions induced by biologic activity.

2006 ◽  
Vol 985 ◽  
Author(s):  
Zell E. Peterman ◽  
Thomas A. Oliver

AbstractThe natural near-field environment in and around the emplacement drifts of the proposed nuclear waste repository at Yucca Mountain, Nevada, includes the host rock, dust, seepage, and pore water. The chemical compositions of these components have been analyzed to provide a basis for assessing possible chemical and mineralogical reactions that may occur after nuclear waste is emplaced. The rock unit hosting the proposed repository has a relatively uniform chemical composition as shown by samples with a mean coefficient of variation (CV) of 9 percent for major elements. In contrast, compositional ranges of underground dust (bulk and water-soluble fractions), pore water, and seepage water are large with mean CVs ranging from 28 to 64 percent for major constituents.


Author(s):  
Ahmad Z Al-Herrawy ◽  
Mohamed A Marouf ◽  
Mahmoud A. Gad

Genus Acanthamoeba causes 3 clinical syndromes amebic keratitis, granulomatous amebic encephalitis and disseminated granulomatous amebic disease (eg, sinus, skin and pulmonary infections). A total of 144 tap water samples were collected from Giza governorate, Egypt. Samples were processed for detection of Acanthamoeba species using non-nutrient agar (NNA) and were incubated at 30oC. The isolates of Acanthamoeba were identified to species level based on the morphologic criteria. Molecular characterization of the Acanthamoeba isolates to genus level was performed by using PCR. The obtained results showed that the highest occurrence percentage of Acanthamoeba species in water samples was observed in summer season (38.9%), then it decreased to be 30.6% in spring and 25% in each of autumn and winter. PCR analysis showed that 100% of 43 Acanthamoeba morphologically positive samples were positive by genus specific primer. In the present study eight species of Acanthamoeba can be morphologically recognized namely Acanthamoeba triangularis, Acanthamoeba echinulata, Acanthamoeba astronyxis, Acanthamoeba comandoni, Acanthamoeba griffini, Acanthamoeba culbertsoni, Acanthamoeba quina and Acanthamoeba lenticulata. In conclusion, the most common Acanthamoeba species in tap water was Acanthamoeba comandoni


2011 ◽  
Vol 11 (2) ◽  
pp. 149-188 ◽  
Author(s):  
Anikó Lipták

This paper presents an overview of the cross-linguistically available strategies used in the formation of questions with coordinated wh-expressions. It offers a systematic characterization of the existing surface patterns of wh-coordination and the syntactic strategies underlying these, and presents typological generalizations on the distribution of these strategies, based on a cross-linguistic survey involving 12 languages. It will be pointed out that languages can be classified into four types according to the availability of coordinated wh-questions in them and that these four types can make use of at least six distinct syntactic strategies for the derivation of wh-coordination. The availability of these strategies will be shown to be limited by the syntactic typology of wh-questions. Keywords: wh-questions; coordination; ellipsis; sharing; (multiple) wh-movement


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4390
Author(s):  
Sevil Savaskan Yilmaz ◽  
Nuri Yildirim ◽  
Murat Misir ◽  
Yasin Misirlioglu ◽  
Emre Celik

Poly(acrylic acid/Kryptofix 23-Dimethacrylate) superabsorbent polymer [P (AA/Kry23-DM) SAP] was synthesized by solution polymerization to remove Co, Ni, Cu, Cd, Mn, Zn, Pb, Cr, and Fe ions in water and improve the quality of the water. Kry23-DM cross-linker (1,4,7,13,16-Pentaoxa-10,19 diazo cyclohexene icosane di methacrylate) was synthesized using Kry23 and methacryloyl chloride. The characterization of the molecules was done by FTIR, TGA, DSC, and SEM techniques. The effects of parameters such as pH, concentration, and the metal ion interaction on the heavy metal ions uptaking of SAP was investigated. It was observed that P (AA/Kry23-DM) SAP has maximum water absorption, and the absorption increases with the pH increase. Adsorption rates and sorption capacity, desorption ratios, competitive sorption (qcs), and distribution coefficient (log D) of P(AA/Kry23-DM) SAP were studied as a function of time and pH with the heavy metal ion concentration. Langmuir and Freundlich isotherms of the P (AA/Kry23-DM) SAP were investigated to verify the metal uptake. Molecular mechanic (MM2), Assisted Model Building with Energy Refinement (AMBER), and optimized potentials for liquid simulations (OPLS) methods. were used in quantum chemical calculations for the conformational analysis of the cross-linker and the SAP. ΔH0f calculations of the cross-linker and the superabsorbent were made using Austin Model 1(AM1) method.


1999 ◽  
Vol 364 (1-2) ◽  
pp. 113-120 ◽  
Author(s):  
Anne Zeck ◽  
M. G. Weller ◽  
Reinhard Niessner

Sign in / Sign up

Export Citation Format

Share Document