scholarly journals Combined approach architecture development to simulation modeling of systems with parallelism

2021 ◽  
Vol 4 (4(112)) ◽  
pp. 74-82
Author(s):  
Oksana Suprunenko

Paradigms and graphical-analytical tools for building simulation tools and forming the architecture of a combined approach to studying the dynamic properties of systems with parallelism are described. An extension of the formal language of Petri nets is presented, which has greater modeling power than WF nets. The properties of hierarchical Petri nets are used to synthesize a holistic model. Discrete-event modeling and modeling of dynamic systems, which allow reflecting the quantitative and qualitative characteristics of the elements of the systems under study, served as the basis for the combined approach to the simulation of systems with parallelism. On their basis, graphic-analytical tools are proposed that provide the ability to describe the modeled system, adhering to the principle of structural similarity. They have dynamic simulations that make it easy to visually analyze and correct the model. Also, the proposed toolkit provides for the analysis of the dynamic properties of the model, which makes it possible to identify accumulated phenomena that can lead to unpredictability of the system’s functioning. A conceptual model for the synthesis and analysis of systems with parallelism is proposed, which provides for the construction of the components of the model based on the architecture. Their step-by-step analysis and the formation of an integral model of the software system are carried out using a network representation, according to the matrix description of which invariants are calculated. The analysis of invariants allows one to obtain the dynamic properties of the model and determine the localization of structures that lead to critical situations when they are detected. The architecture of the combined approach to the simulation of systems with parallelism is built, which provides the study of their dynamic properties to improve the reliability of the functioning of software systems

2021 ◽  
Author(s):  
A. N. Medvedev ◽  
V. N. Timokhin ◽  
Yu. A. Nelyubina

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 37879-37890
Author(s):  
Ji Qiu ◽  
Lide Wang ◽  
Yin Wang ◽  
Yu Hen Hu

2003 ◽  
Vol 76 (4) ◽  
pp. 876-891 ◽  
Author(s):  
R. N. Datta ◽  
A. G. Talma ◽  
S. Datta ◽  
P. G. J. Nieuwenhuis ◽  
W. J. Nijenhuis ◽  
...  

Abstract The use of thiurams such as Tetramethyl thiuram disulfide (TMTD) or Tetrabenzyl thiuram disulfide (TBzTD) has been explored to achieve higher cure efficiency. The studies suggest that a clear difference exists between the effect of TMTD versus TBzTD. TMTD reacts with Bis (triethoxysilylpropyl) tetrasulfide (TESPT) and this reaction can take place even at room temperature. On the other hand, the reaction of TBzTD with TESPT is slow and takes place only at higher temperature. High Performance Liquid Chromatography (HPLC) with mass (MS) detection, Nuclear Magnetic Resonance Spectroscopy (NMR) and other analytical tools have been used to understand the differences between the reaction of TMTD and TESPT versus TBzTD and TESPT. The reaction products originating from these reactions are also identified. These studies indicate that unlike TMTD, TBzTD improves the cure efficiency allowing faster cure without significant effect on processing characteristics as well as dynamic properties. The loading of TESPT is reduced in a typical Green tire compound and the negative effect on viscosity is repaired by addition of anhydrides, such as succinic anhydride, maleic anhydride, etc.


2013 ◽  
Vol 43 (6) ◽  
pp. 1477-1485 ◽  
Author(s):  
Maria Paola Cabasino ◽  
Alessandro Giua ◽  
Andrea Paoli ◽  
Carla Seatzu

Sign in / Sign up

Export Citation Format

Share Document