scholarly journals Improved performance of corrugated metal gaskets in boiler’s piping system through multilayered coating

2021 ◽  
Vol 6 (1 (114)) ◽  
pp. 13-20
Author(s):  
Didik Nurhadiyanto ◽  
Shigeyuki Haruyama ◽  
Mujiyono Mujiyono ◽  
Sutopo Sutopo ◽  
Yunaidi Yunaidi ◽  
...  

The corrugated metal gasket is still in the early stages of development. However, gasket contact flanges with a high surface roughness (more than 3.5 µm) leak and require a lot of force to tighten. A nickel or copper-coated corrugated metal gasket was designed. A water pressure test was used to measure leaks, and the results revealed that nickel or copper-covered gaskets performed better. The effect of high temperature has not been explored in this study, which only reveals high pressure. The goal of this study is to use copper and nickel coatings to improve the performance of corrugated metal gaskets. Copper or nickel infiltrates the pipe flange's rough surface, preventing leaking. The purpose of this study is to investigate the performance of a coated corrugated metal gasket in a boiler system, which has high temperature and pressure. Corrugated metal gaskets were formed using a cold forming process. The gasket material was SUS304, which is copper or nickel-plated through electroplating. The gasket was installed in a series of pipes in the boiler that flows water at high temperature and pressure. The water leak was trickling on white paper that had been placed beneath the gasket. Even small water leaks are detected on white paper. The thermal camera can detect vapor leaks. The results of the studies reveal that the coated corrugated metal gasket's performance was improved, as seen by the reduction in leakage. At the highest pressure of 7 bar and the lowest tightening force of 40 kN, neither gasket leaked. This result is different from standard corrugated metal gaskets, where at the same pressure and temperature, steam and water leaks are observed. Both copper and nickel-plating types can be used to coat corrugated metal gaskets made of SUS304.

2018 ◽  
Vol 213 ◽  
pp. 207-214 ◽  
Author(s):  
Michael Hack ◽  
Wolfgang Korte ◽  
Stefan Sträßer ◽  
Matthias Teschner

1999 ◽  
Vol 122 (1) ◽  
pp. 22-26 ◽  
Author(s):  
M. Law ◽  
W. Payten ◽  
K. Snowden

Modeling of welded joints under creep conditions with finite element analysis was undertaken using the theta projection method. The results were compared to modeling based on a simple Norton law. Theta projection data extends the accuracy and predictive capability of finite element modeling of critical structures operating at high temperature and pressure. In some cases analyzed, it was found that the results diverged from those gained using a Norton law creep model. [S0094-9930(00)00601-6]


2020 ◽  
Author(s):  
Dapeng Wen ◽  
Yongfeng Wang ◽  
Junfeng Zhang ◽  
Pengxiao Li ◽  
Zhen-Min Jin

Open Physics ◽  
2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Lili Liu ◽  
Xiaozhi Wu ◽  
Weiguo Li ◽  
Rui Wang ◽  
Qing Liu

AbstractThe high temperature and pressure effects on the elastic properties of the AgRE (RE=Sc, Tm, Er, Dy, Tb) intermetallic compounds with B2 structure have been performed from first principle calculations. For the temperature range 0-1000 K, the second order elastic constants for all the AgRE intermetallic compounds follow a normal behavior: they decrease with increasing temperature. The pressure dependence of the second order elastic constants has been investigated on the basis of the third order elastic constants. Temperature and pressure dependent elastic anisotropic parameters A have been calculated based on the temperature and pressure dependent elastic constants.


ChemPhysChem ◽  
2014 ◽  
Vol 16 (1) ◽  
pp. 138-146 ◽  
Author(s):  
Caroline Schuabb ◽  
Melanie Berghaus ◽  
Christopher Rosin ◽  
Roland Winter

Sign in / Sign up

Export Citation Format

Share Document