The Role of the Protein Matrix in Green Fluorescent Protein Fluorescence

2006 ◽  
Vol 82 (2) ◽  
pp. 367 ◽  
Author(s):  
Scott L. Maddalo ◽  
Marc Zimmer
FEBS Open Bio ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 1176-1183
Author(s):  
Shirou Tsuchida ◽  
Takumi Kanashiki ◽  
Shuhei Izumiya ◽  
Takuya Ichikawa ◽  
Ryusuke Kurosawa ◽  
...  

2003 ◽  
Vol 69 (7) ◽  
pp. 4214-4218 ◽  
Author(s):  
J. Reunanen ◽  
P. E. J. Saris

ABSTRACT A plasmid coding for the nisin two-component regulatory proteins, NisK and NisR, was constructed; in this plasmid a gfp gene (encoding the green fluorescent protein) was placed under control of the nisin-inducible nisF promoter. The plasmid was transformed into non-nisin-producing Lactococcus lactis strain MG1614. The new strain could sense extracellular nisin and transduce it to green fluorescent protein fluorescence. The amount of fluorescence was dependent on the nisin concentration, and it could be measured easily. By using this strain, an assay for quantification of nisin was developed. With this method it was possible to measure as little as 2.5 ng of pure nisin per ml in culture supernatant, 45 ng of nisin per ml in milk, 0.9 μg of nisin in cheese, and 1 μg of nisin per ml in salad dressings.


1999 ◽  
Vol 65 (10) ◽  
pp. 4646-4651 ◽  
Author(s):  
Bo Normander ◽  
Niels B. Hendriksen ◽  
Ole Nybroe

ABSTRACT The gfp-tagged Pseudomonas fluorescensbiocontrol strain DR54-BN14 was introduced into the barley rhizosphere. Confocal laser scanning microscopy revealed that the rhizoplane populations of DR54-BN14 on 3- to 14-day-old roots were able to form microcolonies closely associated with the indigenous bacteria and that a majority of DR54-BN14 cells appeared small and almost coccoid. Information on the viability of the inoculant was provided by a microcolony assay, while measurements of cell volume, the intensity of green fluorescent protein fluorescence, and the ratio of dividing cells to total cells were used as indicators of cellular activity. At a soil moisture close to the water-holding capacity of the soil, the activity parameters suggested that the majority of DR54-BN14 cells were starving in the rhizosphere. Nevertheless, approximately 80% of the population was either culturable or viable but nonculturable during the 3-week incubation period. No impact of root decay on viability was observed, and differences in viability or activity among DR54-BN14 cells located in different regions of the root were not apparent. In dry soil, however, the nonviable state of DR54-BN14 was predominant, suggesting that desiccation is an important abiotic regulator of cell viability.


1999 ◽  
Vol 65 (2) ◽  
pp. 834-836 ◽  
Author(s):  
Wanglei Du ◽  
Zhengyu Huang ◽  
Joseph E. Flaherty ◽  
Kevin Wells ◽  
Gary A. Payne

ABSTRACT Transformants of Aspergillus flavus containing theAequorea victoria gfp gene fused to a viral promoter or the promoter region and 483 bp of the coding region of A. flavus aflR expressed green fluorescence detectable without a microscope or filters. Expression of green fluorescent protein fluorescence was correlated with resistance to aflatoxin accumulation in five corn genotypes inoculated with these transformants.


2016 ◽  
Vol 28 (2) ◽  
pp. 139
Author(s):  
M. Kurome ◽  
S. Leuchs ◽  
B. Kessler ◽  
E. Kemter ◽  
E. Jemiller ◽  
...  

Because of a rising demand for complex porcine disease models for biomedical research, the approaches for their generation need to be adapted. In this study we describe the direct introduction of a gene construct into the pronucleus (PN)-like structure of cloned embryos as a new strategy for the generation of genetically modified pigs, termed “nuclear injection.” This new strategy could allow adding large constructs into cloned embryos with a genetically modified background. Moreover, the generation of multiple transgenic pigs based on already existing transgenic cells could be facilitated due to a reduction of recloning steps. To evaluate the reliability of this approach, developmental ability of the embryos in vitro or in vivo and integration or expression efficiency of the transgene were examined. Somatic cell NT using in vitro matured oocytes was performed. Wild-type cells were used as nuclear donors. Centrifugation was done 10 h after activation for visualisation of a PN-like structure. Subsequently, linearized pmaxGFP (10 ng μL–1; Amaxa Biosystems) was directly injected into the PN-like structure of the cloned embryos. Expression efficiency in blastocysts generated by nuclear injection was compared to blastocysts generated by the classical PN injection using in vitro-produced zygotes. Injected embryos were transferred to recipient pigs without green fluorescent protein (GFP) selection, and fetuses collected at Day 68 were characterised for their integration and expression pattern of the transgene. Eighty percent of the reconstructed embryos (633/787) exhibited a PN-like structure, which made them available for the method. Green fluorescent protein fluorescence was observed in about half of total blastocysts (52.5%, 21/40), which was comparable to classical PN injection (68.4%, 28/41). Green fluorescent protein fluorescence of blastocysts ranged from mosaic to uniform patterns. In total, 478 pmaxGFP-injected embryos were transferred into 4 recipients, 4 fetuses were collected from one of them. In one of the fetuses that developed normally, the integration of the transgene was confirmed by PCR in different major organs from all 3 primary germ layers and placenta. The integration pattern of the transgene was mosaic (43 out of 84 single-cell colonies established from kidney were positive for GFP DNA by PCR). However, the proportion of GFP-expressing cells was very low (5 out of 84 colonies expressed GFP), which might indicate silencing of transgene expression. Our pilot study demonstrated that the direct introduction of gene constructs into cloned embryos could be a new strategy for the generation of genetically modified pigs. This approach could also be applied to rescue embryos with lethal knockouts by transfer of corresponding human genes, to generate pigs as bioreactors, e.g. for antibodies. This work was supported by the German Research Council – Transregio Collaborative Research Center 127 “Xenotransplantation.”


Sign in / Sign up

Export Citation Format

Share Document