scholarly journals NUMERICAL STUDY OF MHD BOUNDARY LAYER STAGNATION POINT FLOW AND HEAT TRANSFER OVER AN EXPONENTIALLY STRETCHING SURFACE WITH THERMAL RADIATION

2014 ◽  
Vol 03 (15) ◽  
pp. 1003-1010
Author(s):  
M.S.Abel .
2017 ◽  
Vol 378 ◽  
pp. 125-136 ◽  
Author(s):  
Oluwole Daniel Makinde ◽  
K. Ganesh Kumar ◽  
S. Manjunatha ◽  
Bijjanal Jayanna Gireesha

A comprehensive numerical study is conducted to investigate effect of nonlinear thermal radiation on MHD boundary layer flow and melting heat transfer of micro polar fluid over a stretching surface with fluid particles suspension. Using suitable transformations, the governing equations of the problem are transformed in to a set of coupled nonlinear ordinary differential equations and then they are solved numerically using the Runge–Kutta–Fehlberg-45 method with the help of shooting technique. Authentication of the current method is proved by having compared with established results with limiting solution. The impact of the various stimulating parameters on the flow and heat transfer is analyzed and deliberated through plotted graphs in detail. We found that the velocity, angular velocity and temperature fields increase with an increase in the melting process of the stretching sheet. Also it is visualize that the shear stress factor is lower for micro polar fluids as compared to Newtonian fluids, which may be beneficial in flow and heat control of polymeric processing.


Author(s):  
G.C. Layek ◽  
Bidyut Mandal ◽  
Krishnendu Bhattacharyya ◽  
Astick Banerjee

AbstractA symmetry analysis of steady two-dimensional boundary layer stagnation-point flow and heat transfer of viscous incompressible non-Newtonian power-law fluids over a nonlinearly shrinking/stretching sheet with thermal radiation effect is presented. Lie group of continuous symmetry transformations is employed to the boundary layer flow and heat transfer equations, that gives scaling laws and self-similar equations for a special type of shrinking/stretching velocity ($c{x^{1/3}}$) and free-stream straining velocity ($a{x^{1/3}}$) along the axial direction to the sheet. The self-similar equations are solved numerically using very efficient shooting method. For the above nonlinear velocities, the unique self-similar solution is obtained for straining velocity being always less than the shrinking/stretching velocity for Newtonian and non-Newtonian power-law fluids. The thickness of velocity boundary layer becomes thinner with power-law index for shrinking as well as stretching sheet cases. Also, the thermal boundary layer thickness decreases with increasing values the Prandtl number and the radiation parameter.


Sign in / Sign up

Export Citation Format

Share Document