exponentially stretching surface
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 28)

H-INDEX

19
(FIVE YEARS 5)

Author(s):  
Muhammad Naveed Khan ◽  
Rifaqat Ali ◽  
Hijaz Ahmad ◽  
Nadeem Abbas ◽  
Abd Allah A. Mousa ◽  
...  

Heat and mass transfer of the MHD flow of Casson nanofluid by an exponential stretching sheet discussed in this analysis. The MHD with joule heating effects for Casson nanofluid numerically investigated. To characterize the transport property of heat and mass, we considered the thermophoresis and Brownian effect along with thermal radiation and thermophoretic effects. Additionally, we consider the microorganism theory to analyze the suspended nanoparticles by bio-convection. The mathematical model developed on the base of boundary layer flow of casson nanofluid at exponentially stretching surface in term of partial differential equations. The partial differential equations are transformed into nonlinear ordinary differential equations by means of similarity variable transformations. The non-dimensionalized differential equations have numerically tackled by using the Bvp4c MATLAB technique. The graphical outcomes are obtained against the various parameters. Moreover, physical quantities are examined graphically and tabulating data. It is reviewed that resistance of fluid flow improves by the higher estimation of the Casson fluid parameter. Therefore, the axial and transverse velocities are reduced. Further, it is noticed from the tabulated data that more vital values of the Casson fluid parameter diminishes the skin friction and mass transfer rate but enhances the heat transfer rate.


Author(s):  
Shafiq Ahmad ◽  
Sohail Nadeem ◽  
Muhammad Naveed Khan

In the present article, it is examined the steady bio-convective hybridized micropolar nanofluid flow with the stratification conditions above a vertical exponentially stretching surface. The SWCNT+MWCNT are used in a base fluid of water to formulate the Hybrid nanoparticles in the current article. To examine the mass and heat transfer rate, the activation energy and Cattaneo-Christov heat flux are factored into the equation. The relevant transformations are manipulated to transfer the flow model into the coupled non-linear ODEs. To answer the coupled equations, the Bvp4c Matlab approach is being used. The conclusion of various parameters is examined graphically. The physical numbers observed via graphs, such as friction factor, local Sherwood number and local microorganism number. It is worth noticing that the axial and angular velocity reduces close the boundary and enhances away from the boundary with the escalation of solid volume fraction of SWCNT and MWCNT. Further, as increases the Peclet number, microorganism stratification parameters, and bio-convection Schmidt number, the microorganism sketch declines.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1009
Author(s):  
Abdullah Dawar ◽  
Anwar Saeed ◽  
Zahir Shah ◽  
Wiyada Kumam ◽  
Saeed Islam ◽  
...  

The study of fluid flow upon an exponentially stretching surface has significant importance due to its applications in technological phenomena at the industrial level. These applications include condensing process of fluid film, heat exchanger processes, extrusion of plastic sheet in aerodynamics, cooling process of metal sheet, and growth of crystals, etc. Keeping in view all these applications, in this paper, we have discussed the magnetohydrodynamic flow of Maxwell fluid past an exponentially stretching sheet. The stretching surface is considered to be slippery by imposing the velocity slip condition. The magnetic field impact is taken into consideration. Furthermore, heat radiation, Joule heating, Brownian motion, and thermophoresis are also considered. The modeled system is reduced to ordinary differential equations with the help of similarity variables. For the analytical solution, we have used the homotopy analysis method. Furthermore, HAM is compared with the shooting method and found to be in great agreement. The squared residual error of the fluid flow problem at 15th order of approximations for Newtonian and non-Newtonian cases has been investigated. It is found that the fluid flow problem converges quickly for the case of non-Newtonian fluid as compared to Newtonian fluid. In addition, the velocity profile increases while the thermal and concentration profiles reduce with greater values of Darcy number. The thermal profile is the increasing function of the Brownian motion parameter and Eckert number whereas the concentration profile is the reducing function of the Brownian motion parameter and Eckert number. With the augmentation in Darcy number, the permeability strength of porous medium increases which concludes the increasing conduct of thermal and mass transportation.


Author(s):  
Muhammad N Khan ◽  
Sohail Nadeem ◽  
Nadeem Abbas ◽  
AM Zidan

The flow of a chemically reactive Burgers nanofluid with an induced magnetic field over an exponentially stretching surface is considered in this analysis. The thermal slip and concentration slip boundary conditions are considered to analyze the flow at the exponentially stretching surface in the current analysis. Furthermore, a heat transfer analysis is presented with the influence of heat generation/absorption and a variable thermal conductivity effect. Appropriate similarity variables are used to transfer the flow model into the coupled ordinary differential equations. These coupled equations are computed numerically by using the Boundary value problem (BVP) midrich technique. The impact of emerging parameters is examined graphically. It is found that the fluid velocity augments for the several values of relaxation parameters, while it shows the opposite trend for the retardation parameter. Further, it is found that the transfer rate of heat and mass boosted by increasing the values of relaxation and retardation parameters. A comparative investigation of the present article with the prevailing literature shows a remarkable agreement.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110198
Author(s):  
Kamran Ahmed ◽  
Tanvir Akbar

This research work describes the investigation of a magnetohydrodynamic flow of Williamson nanofluid over an exponentially porous stretching surface considering two cases of heat transfer i.e., prescribed exponential order surface temperature (PEST), and prescribed exponential order heat flux (PEHF). As a result of this infestation, a mathematical model of the problem based on conservation of linear momentum and law of conservation of mass and energy is developed. Whereas governing nonlinear partial differential equations (PDEs) are converted to nonlinear ordinary differential equations (ODEs). Subsequently, the velocity, concentration, and temperature profiles are developed by using the method of similarity transformation. Furthermore, the effects of various physical parameters of engineering interests are demonstrated graphically. It is highlighted that both the magnetic parameter [Formula: see text] and Williamson parameter [Formula: see text] causes to reduce the boundary layer thickness.


Sign in / Sign up

Export Citation Format

Share Document