scholarly journals TQDS: TIME STAMPED QUANTUM DIGITAL SIGNATURE TO DEFEND WORMHOLE ATTACK IN WIRELESS SENSOR NETWORK

2014 ◽  
Vol 03 (19) ◽  
pp. 119-125
Author(s):  
T. Akila .
2018 ◽  
Vol 7 (2.23) ◽  
pp. 59 ◽  
Author(s):  
Surinder Singh ◽  
Hardeep Singh Saini

The wireless sensor network has group of sensors which can sense the data and route this data to base station. As there is no physical connection between sensor and base station the important data can be routed without wires. The broadcast nature of wireless sensor network makes it prone to security threat to the valuable data. The attacker node can detect the data by creating their own data aggregation and routing mechanism .The number of attacks can be possible on the network layer. Out of these attacks wormhole is one of the major attack which can change the routing method of the whole wireless sensor network. In this attack,the attacker node can control the packet transmission of whole network and route it to the tunnel of nodes. The major drawback of this attack is to increase the packet drop and disturbing the routing mechanism. A number of security techniques are developed by the researcher to reduce the packet drop ratio and secure the routing mechanism of the network. Out of all thesetechniquesfew related to packet drop ratio are discussed in this paper. TheLightweight countermeasure for the wormhole attack (LITEWORP) based on Dynamic Source routing (DSR) protocol security technique,Delay Per Hop Indication (Delphi) based on AODV(Avoidance Routing Protocol) Protocol security technique and MOBIWORP based on DSRprotocol security technique reduce the packet loss percentage 40%,43% and 35% respectively.   


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Udaya Suriya Raj Kumar Dhamodharan ◽  
Rajamani Vayanaperumal

Wireless sensor networks are highly indispensable for securing network protection. Highly critical attacks of various kinds have been documented in wireless sensor network till now by many researchers. The Sybil attack is a massive destructive attack against the sensor network where numerous genuine identities with forged identities are used for getting an illegal entry into a network. Discerning the Sybil attack, sinkhole, and wormhole attack while multicasting is a tremendous job in wireless sensor network. Basically a Sybil attack means a node which pretends its identity to other nodes. Communication to an illegal node results in data loss and becomes dangerous in the network. The existing method Random Password Comparison has only a scheme which just verifies the node identities by analyzing the neighbors. A survey was done on a Sybil attack with the objective of resolving this problem. The survey has proposed a combined CAM-PVM (compare and match-position verification method) with MAP (message authentication and passing) for detecting, eliminating, and eventually preventing the entry of Sybil nodes in the network. We propose a scheme of assuring security for wireless sensor network, to deal with attacks of these kinds in unicasting and multicasting.


Author(s):  
Harpreet Kaur ◽  
Sharad Saxena

Wireless sensor network is an emerging area in which multiple sensor nodes are present to perform many real-time applications like military application, industrialized automation, health monitoring, weather forecast, etc. Sensor nodes can be organized into a group which is led by a cluster head; this concept is known as clustering. Clustering of wireless sensor network is used when sensor nodes want to communicate simultaneously in a single network. The author organizes the sensor nodes by applying UWDBCSN (underwater density-based clustering sensor network) clustering approach in which routing of the packets is controlled by cluster head. The author also considers the security of sensor nodes which are harmful to different types of mischievous attacks like wormhole attack, denial of service attack, replication or cloning attack, blackhole attack, etc. Node replication is one of the types in which an attacker tries to capture the node and generate the replica or clone of that node in the same network. So, this chapter describes how to deal with these types of attacks. The author used the intrusion detection process to deal with this type of attack. All the detection procedure is combined with sleep/wake scheduling algorithm to increase the performance of sensor nodes in the network.


Sign in / Sign up

Export Citation Format

Share Document