scholarly journals Numerical Analysis of the Characteristics of Glass Photonic Crystal Fibers Infiltrated with Alcoholic Liquids

2020 ◽  
Vol 30 (3) ◽  
Author(s):  
Thuy Thi Nguyen ◽  
Trang Thi Gia Chu ◽  
Minh Van Le ◽  
Vu Quoc Tran ◽  
Khoa Quoc Doan ◽  
...  

The characteristics of PCF with various air hole diameters infiltrated with alcoholic liquids such as ethanol, methanol, propanol and butanol are numerically investigated. Based on the numerical results, we have analyzed and compare in detail the characteristics of these fibers including effective refractive index, effective mode area, dispersion and confinement loss for two case: the diameters and lattices constant of air holes are equal 1 µm and 5µm, 1.42µm and 3.26µm, respectively. The PCF infiltrated with ethanol and butanol showed better near zero flattened dispersion property at 1.42µm and 1µm wavelength respectively. With diameters and lattices constant of air holes equal 1.42μm and 3.26μm, the smallest dispersion of PCF filled with ethanol of 5.91075308 (ps.(nm.km)-1) and methanol of 19.3592474 (ps.(nm.km)-1). The highest ZDW of the PCF infiltrated with ethanol and methanol is 1.24604224µm and 1.22405714µm, respectively. Specially, the value of effective refractive index, effective mode area, dispersion and confinement loss decrease in an orderly manner from butanol, propanol, ethanol to methanol and all the alcoholic liquids’s cuvers of dispersion are flat and are very close to each other and near the zero dispersion curve in case the diameters and lattices constant of air holes are equal 1µm and 5µm. The proposed PCF shows a promising prospect in technology applications such as supercontinuum generation.

Author(s):  
Thi Thuy Nguyen ◽  
Van Hung Dao

We examine the possibility of improving the nonlinear properties of photonic crystal fibers (PCFs) with As2Se3 substrates by creating a difference in the diameters of the air holes of the rings around the core. With the new design, all-normal dispersion properties, small effective mode area, high nonlinear coefficient, and low confinement loss were achieved in the long-wavelength range of 2.0–7.0 µm. The highest nonlinear coefficient is 4414.918 W-1.km-1 at 4.5 µm for the lattice constant (Ʌ) of 3.0 µm and the filling factor (d/Ʌ) of 0.85, while the lowest loss is 1.823´10-21 dB/cm with Ʌ = 3.5 µm and d/Ʌ = 0.8. Based on the numerical simulation results, the characteristics of two optimal structures have been analyzed in detail to guide the application in supercontinuum generation.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
IS Amiri ◽  
P. Yupapin ◽  
Ahmed Nabih Zaki Rashed

AbstractThis study has deeply investigated the basic equations analysis of dispersion and loss in photonic crystal fibers (PCF) within the operating wavelengths of 850, 1,300, and 1,550 nm. The confinement loss, effective refractive index, and effective cross-section area of PCF are also studied. The variations of total dispersion and losses against hole diameter and distance between holes variations in PCF are clarified. Confinement loss, effective refractive index, and effective cross-section area variations for PCF are sketches with the variations of the operating wavelength.


Optik ◽  
2011 ◽  
Vol 122 (23) ◽  
pp. 2151-2154 ◽  
Author(s):  
Jian Liang ◽  
Maojin Yun ◽  
Weijin Kong ◽  
Xin Sun ◽  
Wenfei Zhang ◽  
...  

2020 ◽  
Vol 30 (4) ◽  
pp. 331
Author(s):  
Vu Tran Quoc ◽  
Trang Chu Thi Gia ◽  
Minh Le Van ◽  
Thuy Nguyen Thi ◽  
Phuong Nguyen Thi Hong ◽  
...  

In this paper, a photonic crystal fiber (PCF) with core infiltrated with Nitrobenzene is proposed and investigated. Its feature properties as the effective refractive index, effective mode area, chromatic dispersion, and confinement loss have been numerically simulated. The obtained results show that characteristic quantities of PCF with core infiltrated with Nitrobenzene (PCF-N) having some advantages in comparison to PCF with core infiltrated with Toluene (PCF-T) at 1.55μm wavelength. For the purpose of supercontinuum generation, two optimal structures with lattice constants 2.0μm and 2.5μm with filling factors d/Ʌ = 0.3 are identified.


Sign in / Sign up

Export Citation Format

Share Document