Using CAD-CAM Technology for the Full-Mouth, Fixed, Retrievable Implant Restoration: A Clinical Report

2007 ◽  
Vol 33 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Jack Piermatti

Abstract Computer-assisted design (CAD) and computer-assisted manufacture (CAM) are technologic advancements used in dentistry today. These technologies have been developed to fabricate a complete arch substructure from a solid piece of titanium for a fixed, screw-retained implant-supported prosthesis. This clinical report demonstrates a treatment approach which uses CAD-CAM technology to incorporate a milled, titanium framework with retrievable metal ceramic crowns.

2012 ◽  
Vol 38 (6) ◽  
pp. 757-761 ◽  
Author(s):  
Fonda G. Robinson ◽  
Larry L. Cunningham

This clinical report describes the oral rehabilitation of an adult male who suffered severe dentoalveolar trauma as a result of a motor vehicle accident. The specific objectives of this treatment were to restore esthetics and masticatory function. Treatment included removal of fractured roots, placement of multiple endosseous implants, and placement of anterior and posterior metal-ceramic crowns and fixed partial dentures. Three year clinical examination revealed no pathology associated with the rehabilitation. The patient's esthetic and functional expectations were successfully achieved.


2004 ◽  
Vol 20 (04) ◽  
pp. 262-268
Author(s):  
Reinhard M. Staebler ◽  
Bryan J. Miller ◽  
Paul J. Rakow ◽  
Thomas Koch

Flexible integration concepts for computer-assisted design (CAD) and manufacturing (CAM) systems have been identified as a key to let shipyards select and implement best-in-class software components for their CAD and CAM operations. Current implementations are dominated by bilateral links based on proprietary data exchange formats and are too complex to upgrade parts of a CAD/CAM infrastructure without negative impacts on the other parts. This paper describes the ongoing development of a connector architecture for CAD and CAM systems in shipbuilding. The architecture decouples CAD and CAM systems on the basis of a flexible integration technology, utilizing XML data exchange, lightweight directory access protocol (LDAP), and message-based communication. An enterprise reference model describing all relevant shipbuilding business objects forms the basis for the integration. So-called adapters connect the various CAD and CAM systems to the architecture. An automatic nesting solution is presented as a sample business solution in the connector architecture environment.


2017 ◽  
Vol 33 (06) ◽  
pp. 571-580
Author(s):  
Susan Yanik ◽  
Sherard Tatum ◽  
Susannah Orzell

AbstractSecondary deformities of the zygoma are a rare entity, thanks to the adoption and refinement of open reduction and internal fixation techniques. These injuries are often difficult to treat due to the unique structural, functional, and aesthetic properties of the zygoma. Purely cosmetic defects can often be managed with implants; however, functional deficits generally require mobilization, correction, and subsequent fixation of the defect(s). Performing the necessary osteotomies to mobilize the zygoma is the most crucial part of the procedure, and had traditionally been executed without the use of computer aids. Planning for and performing this step was very difficult and frequently resulted in unsatisfactory outcomes. Recent advancements in virtual mapping and planning have obviated the need for guesswork and have resulted in improved functional and aesthetic outcomes following repositioning. This article will discuss the use of implants, osteotomies, and computer-assisted design/modeling (CAD/CAM) in addressing secondary deformities of the zygoma.


2017 ◽  
Vol 28 (3) ◽  
pp. 299-304 ◽  
Author(s):  
Yolanda Freire ◽  
Esther Gonzalo ◽  
Carlos Lopez-Suarez ◽  
Maria J. Suarez

2016 ◽  
Vol 42 (5) ◽  
pp. 391-398 ◽  
Author(s):  
Fawaz Alzoubi ◽  
Nima Massoomi ◽  
Anders Nattestad

The aim of this study is to assess the accuracy of immediately placed implants using Anatomage Invivo5 computer-assisted design/computer-assisted manufacturing (CAD/CAM) surgical guides and compare the accuracy to delayed implant placement protocol. Patients who had implants placed using Anatomage Invivo5 CAD/CAM surgical guides during the period of 2012–2015 were evaluated retrospectively. Patients who received immediate implant placements and/or delayed implant placements replacing 1–2 teeth were included in this study. Pre- and postsurgical images were superimposed to evaluate deviations at the crest, apex, and angle. A total of 40 implants placed in 29 patients were included in this study. The overall mean deviations measured at the crest, apex, and angle were 0.86 mm, 1.25 mm, and 3.79°, respectively. The means for the immediate group deviations were: crest = 0.85 mm, apex = 1.10, and angle = 3.49°. The means for the delayed group deviations were: crest = 0.88 mm, apex = 1.59, and angle = 4.29°. No statistically significant difference was found at the crest and angle; however, there was a statistically significant difference between the immediate and delayed group at the apex, with the immediate group presenting more accurate placements at the apical point than the delayed group. CAD/CAM surgical guides can be reliable tools to accurately place implants immediately and/or in a delayed fashion. No statistically significant differences were found between the delayed and the immediate group at the crest and angle, however apical position was more accurate in the immediate group.


Scanning ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Francesco Mangano ◽  
Carlo Mangano ◽  
Bidzina Margiani ◽  
Oleg Admakin

Purpose. To present a digital method that combines intraoral and face scanning for the computer-assisted design/computer-assisted manufacturing (CAD/CAM) fabrication of implant-supported bars for maxillary overdentures. Methods. Over a 2-year period, all patients presenting to a private dental clinic with a removable complete denture in the maxilla, seeking rehabilitation with implants, were considered for inclusion in this study. Inclusion criteria were fully edentulous maxilla, functional problems with the preexisting denture, opposing dentition, and sufficient bone volume to insert four implants. Exclusion criteria were age<55 years, need for bone augmentation, uncompensated diabetes mellitus, immunocompromised status, radio- and/or chemotherapy, and previous treatment with oral and/or intravenous aminobisphosphonates. All patients were rehabilitated with a maxillary overdenture supported by a CAD/CAM polyether-ether-ketone (PEEK) implant-supported bar. The outcomes of the study were the passive fit/adaptation of the bar, the 1-year implant survival, and the success rates of the implant-supported overdentures. Results. 15 patients (6 males, 9 females; mean age 68.8±4.7 years) received 60 implants and were rehabilitated with a maxillary overdenture supported by a PEEK bar, designed and milled from an intraoral digital impression. The intraoral scans were integrated with face scans, in order to design each bar with all available patient data (soft tissues, prosthesis, implants, and face) in the correct spatial position. When testing the 3D-printed resin bar, 12 bars out of 15 (80%) had a perfect passive adaptation and fit; in contrast, 3 out of 15 (20%) did not have a sufficient passive fit or adaptation. No implants were lost, for a 1-year survival of 100% (60/60 surviving implants). However, some complications (two fixtures with peri-implantitis in the same patient and two repaired overdentures in two different patients) occurred. This determined a 1-year success rate of 80% for the implant-supported overdenture. Conclusions. In this study, the combination of intraoral and face scans allowed to successfully restore fully edentulous patients with maxillary overdentures supported by 4 implants and a CAD/CAM PEEK bar. Further studies are needed to confirm these outcomes.


Sign in / Sign up

Export Citation Format

Share Document