scholarly journals A new spent fuel source characterization code CHARS and its application to the shielding of the thorium cycle

2014 ◽  
Vol 4 ◽  
pp. 134-137 ◽  
Author(s):  
Baptiste Leniau ◽  
Jonathan N. Wilson
2021 ◽  
Vol 2072 (1) ◽  
pp. 012001
Author(s):  
R A P Dwijayanto ◽  
Suwoto ◽  
Zuhair ◽  
Z Su’ud

Abstract The existence of Tl-208 in thorium fuel cycle is a double-edged sword. Tl-208 is a high-energy 2.6 MeV gamma emitter, which acts as an effective proliferation barrier while simultaneously complicating the handling of the spent fuel. To ensure the safety of the latter, the buildup of both Tl-208 and its parent, U-232, are necessary to be understood. This paper attempts to analyse the buildup of U-232 and Tl-208 in the Reaktor Daya Eksperimental (Experimental Power Reactor/RDE) fuel based on thorium cycle, using various U-233 isotopic vectors. The simulation result shows that U-232-contaminated fresh fuels ended up with higher Tl-208 and U-232 activities at the end of cycle (EOC) compared with uncontaminated fresh fuel. However, their U-232 build-up rate are lower and even negative at one case. Then, lower U-233 purity caused a higher U-232 and Tl-208 activities at EOC. This result implies a considerable difference of isotope buildup between the various U-233 vectors. Consequently, the thorium cycle-based RDE spent fuel handling should consider the isotopic vector of U-233 used in fresh fuel.


Author(s):  
R. Andika Putra Dwijayanto, S.T. ◽  
Ihda Husnayani ◽  
Zuhair Zuhair

CHARACTERISTICS OF RADIONUCLIDES ON THORIUM-CYCLE EXPERIMENTAL POWER REACTOR SPENT FUEL. There are several options of nuclear fuel utilisation in the HTGR-based Experimental Power Reactor (Reaktor Daya Eksperimental/RDE). Although mainly RDE utilises low enriched uranium (LEU)-based fuel, which is the most viable option at the moment, it is possible for RDE to utilise other fuel, for example thorium-based and possibly even plutonium-based fuel. Different fuel yields different spent fuel characteristics, so it is necessary to identify the characteristics to understand and evaluate their handling and interim storage. This paper provides the study on the characteristics of thorium-fuelled RDE spent fuel, assuming typical operational cycle. ORIGEN2.1 code is employed to determine the spent fuel characteristics. The result showed that at the end of the calculation cycle, each thorium-based spent fuel pebble generates around 0,627 Watts of heat, 28 neutrons/s, 8.28x1012 photons/s and yield 192.53 curies of radioactivity. These higher radioactivity and photon emission possibly necessitate different measures in spent fuel management, if RDE were to use thorium-based fuel. Tl-208 activity, which found to be emitting potentially non-negligible strong gamma emission, magnified the requirement of proper spent fuel handling especially radiation shielding in spent fuel cask.Keywords: RDE, spent fuel, thorium, HTGR, Tl-208.


Equipment ◽  
2006 ◽  
Author(s):  
D. Sujish ◽  
C. Meikandamurthy ◽  
T. R. Ellappan ◽  
M. Rajan ◽  
G. Vaidyanathan

1982 ◽  
Author(s):  
E. DRAPER ◽  
GEORGE COULBOURN
Keyword(s):  

Fact Sheet ◽  
1997 ◽  
Author(s):  
Michael L. Pomes ◽  
W.R. Green ◽  
E.M. Thurman ◽  
W.H. Orem ◽  
H.T. Lerch

Sign in / Sign up

Export Citation Format

Share Document