gamma emitter
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 2072 (1) ◽  
pp. 012001
Author(s):  
R A P Dwijayanto ◽  
Suwoto ◽  
Zuhair ◽  
Z Su’ud

Abstract The existence of Tl-208 in thorium fuel cycle is a double-edged sword. Tl-208 is a high-energy 2.6 MeV gamma emitter, which acts as an effective proliferation barrier while simultaneously complicating the handling of the spent fuel. To ensure the safety of the latter, the buildup of both Tl-208 and its parent, U-232, are necessary to be understood. This paper attempts to analyse the buildup of U-232 and Tl-208 in the Reaktor Daya Eksperimental (Experimental Power Reactor/RDE) fuel based on thorium cycle, using various U-233 isotopic vectors. The simulation result shows that U-232-contaminated fresh fuels ended up with higher Tl-208 and U-232 activities at the end of cycle (EOC) compared with uncontaminated fresh fuel. However, their U-232 build-up rate are lower and even negative at one case. Then, lower U-233 purity caused a higher U-232 and Tl-208 activities at EOC. This result implies a considerable difference of isotope buildup between the various U-233 vectors. Consequently, the thorium cycle-based RDE spent fuel handling should consider the isotopic vector of U-233 used in fresh fuel.


Author(s):  
R. Andika Putra Dwijayanto

Thallium-208 (Tl-208), a decay daughter of uranium-232 (U-232), is a strong 2.6 MeV gamma emitter present in significant amount in thorium fuel cycle. Its existence enhances the anti-proliferation characteristics of thorium fuel cycle, but at the same time complicates the fuel handling system. In order to ensure that radiation hazard is properly contained, the buildup and decay characteristics of both U-232 and Tl-208 need to be understood. This paper aimed to provide a characterisation on U-232 and Tl-208 buildup in the thorium-fuelled RGTT200K, a 200 MWt very high temperature reactor (VHTR) developed by BATAN, using ORIGEN2.1 depletion code. Pure and impure U-233 were used as the fissile nuclide for comparison. The result showed that U-232 buildup rate is faster in pure U-233, but its Tl-208 buildup is slower. Nonetheless, pure U-233 always has its U-232 and Tl-208 activity lower than impure U-233. Accordingly, both U-232 and Tl-208 radioactivity post-discharge in pure U-233 are lower than impure U-233, although the difference become somewhat negligible after 300 years of decay. Tl-208 activity peaked after 10 years of decay, necessitating different approach in managing post-discharge fuel management.


2021 ◽  
Vol 36 (08) ◽  
pp. 2150051
Author(s):  
H. Özdoğan ◽  
İsmail Hakki Sarpün ◽  
Mert Şekerci ◽  
Abdullah Kaplan

[Formula: see text], a known gamma emitter, is used for many medical purposes such as imaging of myocardial metastases. It can be produced by using different nuclear reactions. In this study, the reactions of [Formula: see text]Ag([Formula: see text]2n)[Formula: see text], [Formula: see text](p,[Formula: see text]n)[Formula: see text], [Formula: see text](p,[Formula: see text]2n)[Formula: see text], [Formula: see text](p,[Formula: see text]3n)[Formula: see text] and [Formula: see text](p,[Formula: see text]4n)[Formula: see text], which are the production routes of [Formula: see text], were investigated. Production cross-section calculations were performed by using equilibrium and pre-equilibrium models of TALYS 1.95 and EMPIRE 3.2 nuclear reaction codes. Hauser–Feshbach Model was appointed in both codes for calculations of equilibrium approximations. Exciton and Hybrid Monte Carlo Simulation (HMS) models were used in the EMPIRE 3.2, whereas Two-Component Exciton and Geometry Dependent Hybrid Model, which is implemented to TALYS code, has been used in the TALYS 1.95 for pre-equilibrium reactions. Also, a weighting matrix of the nuclear models was obtained by using statistical variance analysis. The optimum beam energy to obtain [Formula: see text] has been determined by using the results obtained from this weighting matrix.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 241 ◽  
Author(s):  
Robin M. de Kruijff ◽  
René Raavé ◽  
Annemarie Kip ◽  
Janneke Molkenboer-Kuenen ◽  
Stefan J. Roobol ◽  
...  

The use of nanoparticles as tumor-targeting agents is steadily increasing, and the influence of nanoparticle characteristics such as size and stealthiness have been established for a large number of nanocarrier systems. However, not much is known about the impact of tumor presence on nanocarrier circulation times. This paper reports on the influence of tumor presence on the in vivo circulation time and biodistribution of polybutadiene-polyethylene oxide (PBd-PEO) polymersomes. For this purpose, polymersomes were loaded with the gamma-emitter 111In and administered intravenously, followed by timed ex vivo biodistribution. A large reduction in circulation time was observed for tumor-bearing mice, with a circulation half-life of merely 5 min (R2 = 0.98) vs 117 min (R2 = 0.95) in healthy mice. To determine whether the rapid polymersome clearance observed in tumor-bearing mice was mediated by macrophages, chlodronate liposomes were administered to both healthy and tumor-bearing mice prior to the intravenous injection of radiolabeled polymersomes to deplete their macrophages. Pretreatment with chlodronate liposomes depleted macrophages in the spleen and liver and restored the circulation time of the polymersomes with no significant difference in circulation time between healthy mice and tumor-bearing mice pretreated with clodronate liposomes (15.2 ± 1.2% ID/g and 13.6 ± 2.7% ID/g, respectively, at 4 h p.i. with p = 0.3). This indicates that activation of macrophages due to tumor presence indeed affected polymersome clearance rate. Thus, next to particle design, the presence of a tumor can also greatly impact circulation times and should be taken into account when designing studies to evaluate the distribution of polymersomes.


2015 ◽  
Vol 54 (06) ◽  
pp. N50-N54 ◽  
Author(s):  
F. Stelzner ◽  
F. F. Knapp ◽  
H.-J. Biersack

SummaryThe history of the early identification of elements and their designation to the Mendeleev Table of the Elements was an important chapter in German science in which Ida (1896-1978) and Walter (1893-1960) Noddack played an important role in the first identification of rhenium (element 75, 1925) and technetium (element 43, 1933). In 1934 Ida Noddack was also the first to predict fission of uranium into smaller atoms. Although the Noddacks did not for some time later receive the recognition for the first identification of technetium-99m, their efforts have appropriately more recently been recognized. The discoveries of these early pioneers are even more astounding in light of the limited technologies and resources which were available during this period. The Noddack discoveries of elements 43 and 75 are related to the sub sequent use of rhenium-188 (beta/ gamma emitter) and technetium-99m (gamma emitter) in nuclear medicine. In particular, the theranostic relationship between these two generator-derived radioisotopes has been demonstrated and offers new opportunities in the current era of personalized medicine.


2011 ◽  
Vol 42 (3-4) ◽  
pp. 425-431 ◽  
Author(s):  
R. Gholipour-Peyvandi ◽  
S.Z. Islami-Rad ◽  
R. Heshmati ◽  
S. Zaferanlouie ◽  
M. Ghannadi-Maragheh
Keyword(s):  

2009 ◽  
Vol 1209 ◽  
Author(s):  
Anthony W. Musumeci ◽  
Lawrence R Gahan ◽  
Tijana Rajh ◽  
Darren J Martin ◽  
Suzanne V Smith

AbstractTo further our understanding of nanoparticle interactions with biological systems, it is important that highly sensitive, reliable and robust methods for labelling particles are established. We report here the application of a series of bi-functional cage ligands to radiolabel a range (i.e. shapes and sizes) of titanium dioxide (TiO2) particles. The cages were covalently attached to the surface of the particles via the use of a dopac derivative and then radiolabelled with a gamma emitting radioisotope. The final radiolabelled nanoparticles proved to be stable in solution and the method easy and robust. The application of a gamma emitter allows the radiolabelled particles to be tracked in vivo and in the environment.


2006 ◽  
Vol 74 (12) ◽  
pp. 1112-1114 ◽  
Author(s):  
William J. Atkinson ◽  
Ivan A. Brezovich

Sign in / Sign up

Export Citation Format

Share Document