scholarly journals Error estimates for a fully discrete $\varepsilon$-uniform finite element method on quasi uniform meshes

Author(s):  
Ali ŞENDUR ◽  
Srinivasan NATESAN ◽  
Gautam SINGH
Author(s):  
Lijuan Nong ◽  
An Chen ◽  
Jianxiong Cao

In this paper, we consider a two-term time-fractional diffusion-wave equation which involves the fractional orders $\alpha\in (1, 2)$ and $\beta\in(0, 1)$, respectively. By using piecewise linear Galerkin finite element method in space and convolution quadrature based on second-order backward difference method in time, we obtain a robust fully discrete scheme. Error estimates for semidiscrete and fully discrete schemes are established with respect to nonsmooth data. Numerical experiments for two-dimensional problems are provided to illustrate the efficiency of the method and conform the theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Yang Liu ◽  
Hong Li ◽  
Jinfeng Wang ◽  
Wei Gao

A new positive definite expanded mixed finite element method is proposed for parabolic partial integrodifferential equations. Compared to expanded mixed scheme, the new expanded mixed element system is symmetric positive definite and both the gradient equation and the flux equation are separated from its scalar unknown equation. The existence and uniqueness for semidiscrete scheme are proved and error estimates are derived for both semidiscrete and fully discrete schemes. Finally, some numerical results are provided to confirm our theoretical analysis.


2017 ◽  
Vol 22 (1) ◽  
pp. 133-156 ◽  
Author(s):  
Yu Du ◽  
Zhimin Zhang

AbstractWe study the error analysis of the weak Galerkin finite element method in [24, 38] (WG-FEM) for the Helmholtz problem with large wave number in two and three dimensions. Using a modified duality argument proposed by Zhu and Wu, we obtain the pre-asymptotic error estimates of the WG-FEM. In particular, the error estimates with explicit dependence on the wave numberkare derived. This shows that the pollution error in the brokenH1-norm is bounded byunder mesh conditionk7/2h2≤C0or (kh)2+k(kh)p+1≤C0, which coincides with the phase error of the finite element method obtained by existent dispersion analyses. Herehis the mesh size,pis the order of the approximation space andC0is a constant independent ofkandh. Furthermore, numerical tests are provided to verify the theoretical findings and to illustrate the great capability of the WG-FEM in reducing the pollution effect.


Sign in / Sign up

Export Citation Format

Share Document