scholarly journals On n-absorbing prime ideals of commutative rings

Author(s):  
Mohammed ISSOUAL ◽  
Najib MAHDOU ◽  
Moutu ABDOU SALAM MOUTUİ
Filomat ◽  
2017 ◽  
Vol 31 (10) ◽  
pp. 2933-2941 ◽  
Author(s):  
Unsal Tekir ◽  
Suat Koc ◽  
Kursat Oral

In this paper, we present a new classes of ideals: called n-ideal. Let R be a commutative ring with nonzero identity. We define a proper ideal I of R as an n-ideal if whenever ab ? I with a ? ?0, then b ? I for every a,b ? R. We investigate some properties of n-ideals analogous with prime ideals. Also, we give many examples with regard to n-ideals.


2013 ◽  
Vol 5 (4) ◽  
pp. 527-544
Author(s):  
V. Erdoğdu ◽  
S. Harman

2019 ◽  
Vol 13 (07) ◽  
pp. 2050121
Author(s):  
M. Aijaz ◽  
S. Pirzada

Let [Formula: see text] be a commutative ring with unity [Formula: see text]. The annihilating-ideal graph of [Formula: see text], denoted by [Formula: see text], is defined to be the graph with vertex set [Formula: see text] — the set of non-zero annihilating ideals of [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] adjacent if and only if [Formula: see text]. Some connections between annihilating-ideal graphs and zero divisor graphs are given. We characterize the prime ideals (or equivalently maximal ideals) of [Formula: see text] in terms of their degrees as vertices of [Formula: see text]. We also obtain the metric dimension of annihilating-ideal graphs of commutative rings.


1991 ◽  
Vol 56 (1) ◽  
pp. 67-70 ◽  
Author(s):  
Kostas Hatzikiriakou

We assume that the reader is familiar with the program of “reverse mathematics” and the development of countable algebra in subsystems of second order arithmetic. The subsystems we are using in this paper are RCA0, WKL0 and ACA0. (The reader who wants to learn about them should study [1].) In [1] it was shown that the statement “Every countable commutative ring has a prime ideal” is equivalent to Weak Konig's Lemma over RCA0, while the statement “Every countable commutative ring has a maximal ideal” is equivalent to Arithmetic Comprehension over RCA0. Our main result in this paper is that the statement “Every countable commutative ring has a minimal prime ideal” is equivalent to Arithmetic Comprehension over RCA0. Minimal prime ideals play an important role in the study of countable commutative rings; see [2, pp. 1–7].


2007 ◽  
Vol 75 (3) ◽  
pp. 417-429 ◽  
Author(s):  
Ayman Badawi

Suppose that R is a commutative ring with 1 ≠ 0. In this paper, we introduce the concept of 2-absorbing ideal which is a generalisation of prime ideal. A nonzero proper ideal I of R is called a 2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. It is shown that a nonzero proper ideal I of R is a 2-absorbing ideal if and only if whenever I1I2I3 ⊆ I for some ideals I1,I2,I3 of R, then I1I2 ⊆ I or I2I3 ⊆ I or I1I3 ⊆ I. It is shown that if I is a 2-absorbing ideal of R, then either Rad(I) is a prime ideal of R or Rad(I) = P1 ⋂ P2 where P1,P2 are the only distinct prime ideals of R that are minimal over I. Rings with the property that every nonzero proper ideal is a 2-absorbing ideal are characterised. All 2-absorbing ideals of valuation domains and Prüfer domains are completely described. It is shown that a Noetherian domain R is a Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R. If RM is Noetherian for each maximal ideal M of R, then it is shown that an integral domain R is an almost Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R.


1994 ◽  
Vol 22 (8) ◽  
pp. 3061-3086 ◽  
Author(s):  
Christopher J. O'Donnell

2018 ◽  
Vol 2020 (1) ◽  
pp. 112-166 ◽  
Author(s):  
Matthias Aschenbrenner ◽  
Anatole Khélif ◽  
Eudes Naziazeno ◽  
Thomas Scanlon

AbstractWe characterize those finitely generated commutative rings which are (parametrically) bi-interpretable with arithmetic: a finitely generated commutative ring A is bi-interpretable with $(\mathbb{N},{+},{\times })$ if and only if the space of non-maximal prime ideals of A is nonempty and connected in the Zariski topology and the nilradical of A has a nontrivial annihilator in $\mathbb{Z}$. Notably, by constructing a nontrivial derivation on a nonstandard model of arithmetic we show that the ring of dual numbers over $\mathbb{Z}$ is not bi-interpretable with $\mathbb{N}$.


2005 ◽  
Vol 2005 (20) ◽  
pp. 3261-3268
Author(s):  
Yasuyuki Hirano ◽  
Hisaya Tsutsui

A study of pairs of commutative rings with the same set of prime ideals appears in the literature. In this paper, we investigate pairs of subrings, not necessarily commutative, with a common set of proper ideals.


Author(s):  
Mohammed Issoual

Let [Formula: see text] be a group with identity [Formula: see text] and [Formula: see text] be [Formula: see text]-graded commutative ring with [Formula: see text] In this paper, we introduce and study the graded versions of 1-absorbing prime ideal. We give some properties and characterizations of these ideals in graded ring, and we give a characterization of graded 1-absorbing ideal the idealization [Formula: see text]


Sign in / Sign up

Export Citation Format

Share Document