scholarly journals Allergic Reactions at Enzyme Replacement Therapy in Children with Mucopolysaccharidosis Type II

Author(s):  
Julia G. Levina ◽  
Nato D. Vashakmadze ◽  
Leyla S. Namazova-Baranova ◽  
Elena A. Vishneva ◽  
Natalia V. Zhurkova ◽  
...  

Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is rare hereditary disease caused by changes in the IDS gene and associated deficiency of lysosomal enzyme iduronate-2-sulfatase (I2S). The main treatment scheme for children with MPS II is enzyme replacement therapy (ERT) with recombinant human I2S. The major issue of ERT is development of allergic (sometimes up to severe anaphylaxis) reactions to recombinant enzymes. The article covers features of infusion-related reactions to ERT, it describes pathogenesis, diagnostic criteria management algorithm of anaphylaxis. Whereas, there is the need of further studies on allergic infusion-related reactions to ERT in children.

2020 ◽  
Vol 1 (4) ◽  
pp. 242-247
Author(s):  
Lyudmila M. Kuzenkova ◽  
Tatyana V. Podkletnova ◽  
Lale A. Pak ◽  
Oksana A. Ereshko

Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is an inherited chronic progressive lysosomal disease associated with recessive X-linked inheritance. MPS II is classified as an orphan disease and occurs at a rate of 1.3 per 100,000 white boys. Hunter syndrome is the most common type of mucopolysaccharidosis, accounting for about 50% of MPS types. The diseases pathogenesis is based on a violation of the stepwise cleavage of glycosaminoglycans (GAG) heparansulfate and dermatansulfate caused by a deficiency of the iduronate-2-sulfatase enzyme encoded by theIDSgene. The existing deficiency or complete absence of iduronate-2-sulfatase leads to a violation of the final stage of glycosaminoglycan catabolism and the accumulation heparansulfate and dermatansulfate in all organs and tissues. Currently, there are two drugs registered in the Russian Federation for pathogenetic enzyme replacement therapy of MPS: idursulfase and idursulfase beta. This refers to the expansion of the therapeutic options for Hunter syndrome patients in the event of severe adverse events. It allows choosing the treatment regimen that will be optimal for the patient and will significantly improve the quality of life. In this article, the authors share their own experience of changing enzyme replacement therapy in an MPS II child patient.


2019 ◽  
Vol 10 (2) ◽  
pp. 186-194 ◽  
Author(s):  
Ryutaro Yamanishi ◽  
Natsuko Nakamura ◽  
Kazushige Tsunoda

We analyzed the effects of enzyme replacement therapy (ERT) on the visual acuity and visual fields of a patient with mucopolysaccharidosis type II, Hunter syndrome, with degeneration of the retina and abnormalities of the optic nerve. After the ERT, there was an improvement of the visual acuity and visual fields and an improvement of the activities of daily living. Despite the late onset of Hunter syndrome in this patient, ERT was still able to improve the visual function. We conclude that ERT should be considered regardless of the age of the manifestations of the signs and symptoms of Hunter syndrome.


2021 ◽  
Vol 22 (11) ◽  
pp. 5490
Author(s):  
Paweł Zapolnik ◽  
Antoni Pyrkosz

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder based on a mutation in the IDS gene that encodes iduronate 2-sulphatase. As a result, there is an accumulation of glycosaminoglycans—heparan sulphate and dermatan sulphate—in almost all body tissues, which leads to their dysfunction. Currently, the primary treatment is enzyme replacement therapy, which improves the course of the disease by reducing somatic symptoms, including hepatomegaly and splenomegaly. The enzyme, however, does not cross the blood–brain barrier, and no improvement in the function of the central nervous system has been observed in patients with the severe form of the disease. An alternative method of treatment that solves typical problems of enzyme replacement therapy is gene therapy, i.e., delivery of the correct gene to target cells through an appropriate vector. Much progress has been made in applying gene therapy for MPS II, from cellular models to human clinical trials. In this article, we briefly present the history and basics of gene therapy and discuss the current state of knowledge about the methods of this therapy in mucopolysaccharidosis type II.


Author(s):  
Nato D. Vashakmadze ◽  
Natalya V. Zhurkova ◽  
Olga B. Gordeeva ◽  
Elena V. Komarova ◽  
Tatyana E. Privalova ◽  
...  

Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is X-linked hereditary disease from the group of lysosomal storage disease. Its prevalence is 3–7 cases per 1 million live-born boys. MPS II occurs due to the deficiency of iduronate-2-sulfatase enzyme because of pathological changes in the structure of the IDS gene. Enzyme deficiency leads to the accumulation of glycosaminoglycans (GAGs), dermatan sulfate and heparan sulfate, in lysosomes. This leads to the damage of various organs and systems in the body with further development of clinical picture of the disease: coarse face, recurrent infections of upper respiratory tract, hearing loss up to deafness, cardiovascular and respiratory systems pathologies, hepatosplenomegaly, musculoskeletal system abnormalities, low growth, central nervous system damage. Enzyme replacement therapy with idursulfase, that was introduced in clinical practice 15 years ago, has significantly changed the quality of life of these patients. Idursulfase is purified form of natural lysosomal enzyme iduronate-2-sulfatase obtained via human cell line. Exogenous enzyme entry promotes GAGs catabolism in cells. This article provides outcomes analysis of foreign and Russian studies on the efficacy and safety of this medication, and its effect on MPS II patients survivability.


Sign in / Sign up

Export Citation Format

Share Document