scholarly journals Enzyme Replacement Therapy with Idursulfase in Patients with Mucopolysaccharidosis Type II: Literature Review

Author(s):  
Nato D. Vashakmadze ◽  
Natalya V. Zhurkova ◽  
Olga B. Gordeeva ◽  
Elena V. Komarova ◽  
Tatyana E. Privalova ◽  
...  

Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is X-linked hereditary disease from the group of lysosomal storage disease. Its prevalence is 3–7 cases per 1 million live-born boys. MPS II occurs due to the deficiency of iduronate-2-sulfatase enzyme because of pathological changes in the structure of the IDS gene. Enzyme deficiency leads to the accumulation of glycosaminoglycans (GAGs), dermatan sulfate and heparan sulfate, in lysosomes. This leads to the damage of various organs and systems in the body with further development of clinical picture of the disease: coarse face, recurrent infections of upper respiratory tract, hearing loss up to deafness, cardiovascular and respiratory systems pathologies, hepatosplenomegaly, musculoskeletal system abnormalities, low growth, central nervous system damage. Enzyme replacement therapy with idursulfase, that was introduced in clinical practice 15 years ago, has significantly changed the quality of life of these patients. Idursulfase is purified form of natural lysosomal enzyme iduronate-2-sulfatase obtained via human cell line. Exogenous enzyme entry promotes GAGs catabolism in cells. This article provides outcomes analysis of foreign and Russian studies on the efficacy and safety of this medication, and its effect on MPS II patients survivability.

2021 ◽  
Vol 22 (11) ◽  
pp. 5490
Author(s):  
Paweł Zapolnik ◽  
Antoni Pyrkosz

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder based on a mutation in the IDS gene that encodes iduronate 2-sulphatase. As a result, there is an accumulation of glycosaminoglycans—heparan sulphate and dermatan sulphate—in almost all body tissues, which leads to their dysfunction. Currently, the primary treatment is enzyme replacement therapy, which improves the course of the disease by reducing somatic symptoms, including hepatomegaly and splenomegaly. The enzyme, however, does not cross the blood–brain barrier, and no improvement in the function of the central nervous system has been observed in patients with the severe form of the disease. An alternative method of treatment that solves typical problems of enzyme replacement therapy is gene therapy, i.e., delivery of the correct gene to target cells through an appropriate vector. Much progress has been made in applying gene therapy for MPS II, from cellular models to human clinical trials. In this article, we briefly present the history and basics of gene therapy and discuss the current state of knowledge about the methods of this therapy in mucopolysaccharidosis type II.


Author(s):  
Julia G. Levina ◽  
Nato D. Vashakmadze ◽  
Leyla S. Namazova-Baranova ◽  
Elena A. Vishneva ◽  
Natalia V. Zhurkova ◽  
...  

Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is rare hereditary disease caused by changes in the IDS gene and associated deficiency of lysosomal enzyme iduronate-2-sulfatase (I2S). The main treatment scheme for children with MPS II is enzyme replacement therapy (ERT) with recombinant human I2S. The major issue of ERT is development of allergic (sometimes up to severe anaphylaxis) reactions to recombinant enzymes. The article covers features of infusion-related reactions to ERT, it describes pathogenesis, diagnostic criteria management algorithm of anaphylaxis. Whereas, there is the need of further studies on allergic infusion-related reactions to ERT in children.


2019 ◽  
Vol 20 (23) ◽  
pp. 5829 ◽  
Author(s):  
Mitsuyo Maeda ◽  
Toshiyuki Seto ◽  
Chiho Kadono ◽  
Hideto Morimoto ◽  
Sachiho Kida ◽  
...  

Mucopolysaccharidosis type II (MPS II) is a rare lysosomal storage disease (LSD) involving a genetic error in iduronic acid-2-sulfatase (IDS) metabolism that leads to accumulation of glycosaminoglycans within intracellular lysosomes. The primary treatment for MPS II, enzyme replacement therapy, is not effective for central nervous system (CNS) symptoms, such as intellectual disability, because the drugs do not cross the blood–brain barrier. Recently, autophagy has been associated with LSDs. In this study, we examined the morphologic relationship between neuronal damage and autophagy in IDS knockout mice using antibodies against subunit c of mitochondrial adenosine triphosphate (ATP) synthetase and p62. Immunohistological changes suggesting autophagy, such as vacuolation, were observed in neurons, microglia, and pericytes throughout the CNS, and the numbers increased over postnatal development. Oral administration of chloroquine, which inhibits autophagy, did not suppress damage to microglia and pericytes, but greatly reduced neuronal vacuolation and eliminated neuronal cells with abnormal inclusions. Thus, decreasing autophagy appears to prevent neuronal degeneration. These results suggest that an autophagy modulator could be used in addition to conventional enzyme replacement therapy to preserve the CNS in patients with MPS II.


2020 ◽  
Vol 1 (4) ◽  
pp. 242-247
Author(s):  
Lyudmila M. Kuzenkova ◽  
Tatyana V. Podkletnova ◽  
Lale A. Pak ◽  
Oksana A. Ereshko

Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is an inherited chronic progressive lysosomal disease associated with recessive X-linked inheritance. MPS II is classified as an orphan disease and occurs at a rate of 1.3 per 100,000 white boys. Hunter syndrome is the most common type of mucopolysaccharidosis, accounting for about 50% of MPS types. The diseases pathogenesis is based on a violation of the stepwise cleavage of glycosaminoglycans (GAG) heparansulfate and dermatansulfate caused by a deficiency of the iduronate-2-sulfatase enzyme encoded by theIDSgene. The existing deficiency or complete absence of iduronate-2-sulfatase leads to a violation of the final stage of glycosaminoglycan catabolism and the accumulation heparansulfate and dermatansulfate in all organs and tissues. Currently, there are two drugs registered in the Russian Federation for pathogenetic enzyme replacement therapy of MPS: idursulfase and idursulfase beta. This refers to the expansion of the therapeutic options for Hunter syndrome patients in the event of severe adverse events. It allows choosing the treatment regimen that will be optimal for the patient and will significantly improve the quality of life. In this article, the authors share their own experience of changing enzyme replacement therapy in an MPS II child patient.


Author(s):  
Miguel Sampayo-Cordero ◽  
Bernat Miguel-Huguet ◽  
Andrea Malfettone ◽  
José Manuel Pérez-García ◽  
Antonio Llombart-Cussac ◽  
...  

Background: Case reports are usually excluded from systematic reviews. Patients with rare diseases are more dependent on novel individualized strategies than patients with common diseases. We reviewed and summarized the novelties reported by case reports in mucopolysaccharidosis type II (MPS-II) patients treated with enzyme replacement therapy (ERT). Methods: We selected the case reports included in a previous meta-analysis of patients with MPS-II treated with ERT. Later clinical studies evaluating the same topic of those case reports were reported. Our primary aim was to summarize novelties reported in previous case reports. Secondary objectives analyzed the number of novelties evaluated in subsequent clinical studies and the time elapsed between the publication of the case report to the publication of the clinical study. Results: We identified 11 innovative proposals in case reports that had not been previously considered in clinical studies. Only two (18.2%) were analyzed in subsequent nonrandomized cohort studies. The other nine novelties (81.8%) were analyzed in later case reports (five) or were not included in ulterior studies (four) after more than five years from their first publication. Conclusions: Case reports should be included in systematic reviews of rare disease to obtain a comprehensive summary of the state of research and offer valuable information for healthcare practitioners.


2020 ◽  
Vol 18 (6) ◽  
pp. 485-490
Author(s):  
Nato D. Vashakmadze ◽  
Leyla S. Namazova-Baranova ◽  
Natalia V. Zhurkova ◽  
Ekaterina Yu. Zakharova ◽  
Grigory V. Revunenkov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document