scholarly journals Wind, sea ice, inertial oscillations and upper ocean mixing in Marguerite Bay, Western Antarctic Peninsula : observations and modeling

Author(s):  
Jason Hyatt
2002 ◽  
Author(s):  
Michael C. Gregg ◽  
Jack B. Miller

1997 ◽  
Author(s):  
Michael Gregg ◽  
Jack Miller

2021 ◽  
Author(s):  
Andrew Corso ◽  
Deborah Steinberg ◽  
Sharon Stammerjohn ◽  
Eric Hilton

Abstract Over the last half of the 20th century, the western Antarctic Peninsula has been one of the most rapidly warming regions on Earth, leading to substantial reductions in regional sea ice coverage. These changes are modulated by atmospheric forcing, including the Amundsen Sea Low (ASL) pressure system. We utilized a novel 25-year (1993–2017) time series to model the effects of environmental variability on larvae of a keystone species, the Antarctic Silverfish (Pleuragramma antarctica). Antarctic Silverfish use sea ice as spawning habitat and are important prey for penguins and other predators. We show that warmer sea surface temperature and decreased sea ice negatively impact larval abundance. Modulating both sea surface temperature and sea ice is ASL variability, where a strong ASL is associated with reduced larvae. These findings support a narrow sea ice and temperature tolerance for adult and larval fish. Further regional warming predicted to occur during the 21st century could displace fish populations, altering this pelagic ecosystem.


Author(s):  
Oscar Schofield ◽  
Michael Brown ◽  
Josh Kohut ◽  
Schuyler Nardelli ◽  
Grace Saba ◽  
...  

The West Antarctic Peninsula (WAP) has experienced significant change over the last 50 years. Using a 24 year spatial time series collected by the Palmer Long Term Ecological Research programme, we assessed long-term patterns in the sea ice, upper mixed layer depth (MLD) and phytoplankton productivity. The number of sea ice days steadily declined from the 1980s until a recent reversal that began in 2008. Results show regional differences between the northern and southern regions sampled during regional ship surveys conducted each austral summer. In the southern WAP, upper ocean MLD has shallowed by a factor of 2. Associated with the shallower mixed layer is enhanced phytoplankton carbon fixation. In the north, significant interannual variability resulted in the mixed layer showing no trended change over time and there was no significant increase in the phytoplankton productivity. Associated with the recent increases in sea ice there has been an increase in the photosynthetic efficiency (chlorophyll a -normalized carbon fixation) in the northern and southern regions of the WAP. We hypothesize the increase in sea ice results in increased micronutrient delivery to the continental shelf which in turn leads to enhanced photosynthetic performance. This article is part of the theme issue ‘The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change’.


PLoS ONE ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. e0214814 ◽  
Author(s):  
Adrian Dahood ◽  
George M. Watters ◽  
Kim de Mutsert

Sign in / Sign up

Export Citation Format

Share Document