ice coverage
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 64)

H-INDEX

29
(FIVE YEARS 3)

MAUSAM ◽  
2021 ◽  
Vol 62 (4) ◽  
pp. 609-616
Author(s):  
AMITA PRABHU ◽  
P.N. MAHAJAN ◽  
R.M. KHALADKAR

The development in the satellite microwave technology during the past three decades has offered an opportunity to the scientific community to access the sea ice data over the polar regions, which was otherwise inaccessible for continuous monitoring by any other means. The present study focuses on the trends in the Sea Ice Extent (SIE) over different sectors of the Arctic and the Antarctic regions and the interannual variability in their extremes. In general, the data over the period (1979-2007) reveal marked interannual variability in the sea ice cover with an increasing and the decreasing trend over the Antarctic and the Arctic region respectively. Over the southern hemisphere, only the Bellingshausen and Amundsen Seas sector shows an exceptional decreasing trend. However, in the northern hemisphere, all the sectors show a decreasing trend, with the Kara and Barents Seas sector being the most prominent one. Although, the decreasing trend of the SIE over the Arctic could be attributed to the global warming, an intriguing question still remains as to why the other polar region shows a different behaviour.


2021 ◽  
Vol 8 ◽  
Author(s):  
Alexander Osadchiev ◽  
Dmitry Frey ◽  
Eduard Spivak ◽  
Sergey Shchuka ◽  
Natalia Tilinina ◽  
...  

This work is focused on the structure and inter-annual variability of the freshened surface layer (FSL) in the Laptev and East-Siberian seas during ice-free periods. This layer is formed mainly by deltaic rivers among which the Lena River contributes about two thirds of the inflowing freshwater volume. Based on in situ measurements, we show that the area of this FSL during certain years is much greater than the area of FSL in the neighboring Kara Sea, while the total annual freshwater discharge to the Laptev and East-Siberian seas is 1.5 times less than to the Kara Sea (mainly from the estuaries of the Ob and Yenisei rivers). This feature is caused by differences in morphology of the estuaries and deltas. Shallow and narrow channels of the Lena Delta are limitedly affected by sea water. As a result, undiluted Lena discharge inflows to sea from multiple channels and forms relatively shallow plume, as compared to the Ob-Yenisei plume, which mixes with subjacent saline sea water in deep and wide estuaries. Due to small vertical extents of FSL in the Laptev and East-Siberian seas, wind conditions strongly affect its spreading and determine its significant inter-annual variability, as compared to relatively stable FSL in the Kara Sea. During years with prevailing western and northern winds, FSL is localized in the southern parts of the Laptev and East-Siberian seas due to southward Ekman transport, meridional extent (<250 km) and area (∼250,000 km2) of FSL are relatively small. During years with strong eastern winds FSL spreads northward over large area (up to 500,000 km2), its meridional extent increases up to 500–700 km. At the same time, area and position of FSL do not show any dependence on significant variability of the annual river discharge volume and ice coverage during warm season.


2021 ◽  
Author(s):  
◽  
Leo Pure

<p>Detailed mapping studies of Quaternary stratovolcanoes provide critical frameworks for examining the long-term evolution of magmatic systems and volcanic behaviour. For stratovolcanoes that have experienced glaciation, edifice-forming products also act as climate-proxies from which ice thicknesses can be inferred at specific points in time. One such volcano is Tongariro, which is located in the southern Taupō Volcanic Zone of New Zealand’s North Island. This study presents the results of new detailed mapping, geochronological and geochemical investigations on edifice-forming materials to reconstruct Tongariro’s volcanic and magmatic history which address the following questions: (1) Does ice coverage on stratovolcanoes influence eruptive rates and behaviour (or record completeness)? (2) What is the relationship between magmatism, its expression (i.e. volcanism) and external but related processes such as tectonics? (3) How are intermediate-composition magmas assembled and what controls their diversity? (4) What are the relative proportions of mantle-derived and crust-derived materials in intermediate composition arc magmas? (5) Do genetic relationships exist between andesite and rhyolite magmas in arc settings?  Samples from 250 new field localities in under-examined areas of Tongariro were analysed for major oxide, trace element and Sr-Nd-Pb isotope compositions. Analyses were performed on whole-rock, groundmass and xenolith samples. The stratigraphic framework for these geochemical data was established from field observations and 29 new 40Ar/39Ar age determinations, which were synthesised with volume estimates and petrographic observations for all Tongariro map units. Mapping results divide Tongariro into 36 distinct map units (at their greatest level of subdivision) which were organised into formations and constituent members.   New 40Ar/39Ar age determinations reveal continuous eruptive activity at Tongariro from at least 230 ka to present, including during glacial periods. This adds to the discovery of an inlier of old basaltic-andesite (512 ± 59 ka) on Tongariro’s NW sector that has an unclear source vent. Hornblende-phyric andesite boulders, mapped into the Tupuna Formation (new), yield the oldest 40Ar/39Ar age determination (304 ± 11 ka) for materials confidently attributed to Tongariro. Tupuna Formation andesites are correlated with Turakina Formation debris flows that were deposited between 349 to 309 ka in the Wanganui Basin, ~100 km south of Tongariro, which indicates that Ruapehu did not exist at this time, at least not in its current form.  Tongariro has a total edifice volume of ~90 km3, 19 km3 of which is represented by exposed mapped units. The total ringplain volume immediately adjacent to Tongariro contains ~60 km3 of material. The volume of exposed glacial deposits are no more than 1 km3. During periods of major ice coverage, edifice-building rates on Tongariro were only 17-21 % of edifice-building rates during warmer climatic periods. Because shifts in edifice-building rates do not coincide with changes in erupted compositions, differences in edifice-building rates reflect a preservation bias. Materials erupted during glacial periods were emplaced onto ice masses and conveyed to the ringplain as debris, which explains reduced preservation rates at these times.   MgO concentrations in Tongariro stratigraphic units with ages between 230 and 0 ka display successive and irregular cyclicity that occurs over ~10-70 kyr intervals, which reflect episodes of enhanced mafic magma replenishment. During these cycles, more rapid (≤10 kyr) increases in MgO concentrations to ≥5-9 wt% are followed by gradual declines to ~2-5 wt%, with maxima at ~230, ~160, ~117, ~88, ~56, ~35, ~17.5 ka and during the Holocene.   Contemporaneous variations in Tongariro and Ruapehu magma compositions (e.g. MgO, Rb/Sr, Sr-Nd-Pb isotope ratios) for the 200-0 ka period coincide with reported zircon growth model-ages in Taupō magmas. This contemporaneity reflects regional tectonic processes that have externally regulated and synchronised the timings of elevated mafic replenishment episodes versus periods of prolonged crustal residence at each of these volcanoes.  Isotopic Sr-Nd-Pb data from metasedimentary xenoliths, groundmass separates and whole-rock samples indicate that two or three separate metasedimentary terranes (in the upper 15 km of the crust) were assimilated into Tongariro magmas. These are the Kaweka terrane and the Waipapa or Pahau terranes (or both). Subhorizontal juxtapositioning of these terranes is indicated by the coexistence of multiple terranes in the same eruptive units.  Paired whole-rock and groundmass (interstitial melt) samples have effectively equal Sr-Nd-Pb isotope ratios for the complete range of Tongariro compositions. Despite intra-crystal isotopic heterogeneities that are likely widespread, the new data show that crystal fractionation and assimilation occur in approximately equal balance for essentially all Tongariro eruptives.  Assimilated country rock accounts for 22-31 wt% of the average Tongariro magma. Initial evolution from a Kakuki basalt-type to a Tongariro Te Rongo Member basaltic-andesite reflects the addition of 17 % assimilated metasedimentary basement with a mass assimilation rate/mass crystal fractionation rate ratio—a.k.a. ‘r value’ of 1.8-3.5. Subsequent evolution from a Te Rongo Member basaltic-andesite to other Tongariro eruptive compositions represents 5-14 % more assimilated crust (r values of ~0.1-1.0). Magma evolution from high (>1) to lower (0.1-1.0) r values can explain the dearth of andesitic melt inclusions in (bulk) andesite magmas observed globally. High relative assimilation rates characterise rapid evolution from basalt to basaltic-andesite bulk compositions which contain andesitic interstitial melts. Thus, andesitic melt inclusions have a reduced chance of being preserved in crystals which can explain their low representation in global datasets.</p>


2021 ◽  
Author(s):  
◽  
Leo Pure

<p>Detailed mapping studies of Quaternary stratovolcanoes provide critical frameworks for examining the long-term evolution of magmatic systems and volcanic behaviour. For stratovolcanoes that have experienced glaciation, edifice-forming products also act as climate-proxies from which ice thicknesses can be inferred at specific points in time. One such volcano is Tongariro, which is located in the southern Taupō Volcanic Zone of New Zealand’s North Island. This study presents the results of new detailed mapping, geochronological and geochemical investigations on edifice-forming materials to reconstruct Tongariro’s volcanic and magmatic history which address the following questions: (1) Does ice coverage on stratovolcanoes influence eruptive rates and behaviour (or record completeness)? (2) What is the relationship between magmatism, its expression (i.e. volcanism) and external but related processes such as tectonics? (3) How are intermediate-composition magmas assembled and what controls their diversity? (4) What are the relative proportions of mantle-derived and crust-derived materials in intermediate composition arc magmas? (5) Do genetic relationships exist between andesite and rhyolite magmas in arc settings?  Samples from 250 new field localities in under-examined areas of Tongariro were analysed for major oxide, trace element and Sr-Nd-Pb isotope compositions. Analyses were performed on whole-rock, groundmass and xenolith samples. The stratigraphic framework for these geochemical data was established from field observations and 29 new 40Ar/39Ar age determinations, which were synthesised with volume estimates and petrographic observations for all Tongariro map units. Mapping results divide Tongariro into 36 distinct map units (at their greatest level of subdivision) which were organised into formations and constituent members.   New 40Ar/39Ar age determinations reveal continuous eruptive activity at Tongariro from at least 230 ka to present, including during glacial periods. This adds to the discovery of an inlier of old basaltic-andesite (512 ± 59 ka) on Tongariro’s NW sector that has an unclear source vent. Hornblende-phyric andesite boulders, mapped into the Tupuna Formation (new), yield the oldest 40Ar/39Ar age determination (304 ± 11 ka) for materials confidently attributed to Tongariro. Tupuna Formation andesites are correlated with Turakina Formation debris flows that were deposited between 349 to 309 ka in the Wanganui Basin, ~100 km south of Tongariro, which indicates that Ruapehu did not exist at this time, at least not in its current form.  Tongariro has a total edifice volume of ~90 km3, 19 km3 of which is represented by exposed mapped units. The total ringplain volume immediately adjacent to Tongariro contains ~60 km3 of material. The volume of exposed glacial deposits are no more than 1 km3. During periods of major ice coverage, edifice-building rates on Tongariro were only 17-21 % of edifice-building rates during warmer climatic periods. Because shifts in edifice-building rates do not coincide with changes in erupted compositions, differences in edifice-building rates reflect a preservation bias. Materials erupted during glacial periods were emplaced onto ice masses and conveyed to the ringplain as debris, which explains reduced preservation rates at these times.   MgO concentrations in Tongariro stratigraphic units with ages between 230 and 0 ka display successive and irregular cyclicity that occurs over ~10-70 kyr intervals, which reflect episodes of enhanced mafic magma replenishment. During these cycles, more rapid (≤10 kyr) increases in MgO concentrations to ≥5-9 wt% are followed by gradual declines to ~2-5 wt%, with maxima at ~230, ~160, ~117, ~88, ~56, ~35, ~17.5 ka and during the Holocene.   Contemporaneous variations in Tongariro and Ruapehu magma compositions (e.g. MgO, Rb/Sr, Sr-Nd-Pb isotope ratios) for the 200-0 ka period coincide with reported zircon growth model-ages in Taupō magmas. This contemporaneity reflects regional tectonic processes that have externally regulated and synchronised the timings of elevated mafic replenishment episodes versus periods of prolonged crustal residence at each of these volcanoes.  Isotopic Sr-Nd-Pb data from metasedimentary xenoliths, groundmass separates and whole-rock samples indicate that two or three separate metasedimentary terranes (in the upper 15 km of the crust) were assimilated into Tongariro magmas. These are the Kaweka terrane and the Waipapa or Pahau terranes (or both). Subhorizontal juxtapositioning of these terranes is indicated by the coexistence of multiple terranes in the same eruptive units.  Paired whole-rock and groundmass (interstitial melt) samples have effectively equal Sr-Nd-Pb isotope ratios for the complete range of Tongariro compositions. Despite intra-crystal isotopic heterogeneities that are likely widespread, the new data show that crystal fractionation and assimilation occur in approximately equal balance for essentially all Tongariro eruptives.  Assimilated country rock accounts for 22-31 wt% of the average Tongariro magma. Initial evolution from a Kakuki basalt-type to a Tongariro Te Rongo Member basaltic-andesite reflects the addition of 17 % assimilated metasedimentary basement with a mass assimilation rate/mass crystal fractionation rate ratio—a.k.a. ‘r value’ of 1.8-3.5. Subsequent evolution from a Te Rongo Member basaltic-andesite to other Tongariro eruptive compositions represents 5-14 % more assimilated crust (r values of ~0.1-1.0). Magma evolution from high (>1) to lower (0.1-1.0) r values can explain the dearth of andesitic melt inclusions in (bulk) andesite magmas observed globally. High relative assimilation rates characterise rapid evolution from basalt to basaltic-andesite bulk compositions which contain andesitic interstitial melts. Thus, andesitic melt inclusions have a reduced chance of being preserved in crystals which can explain their low representation in global datasets.</p>


2021 ◽  
Vol 13 (22) ◽  
pp. 4577
Author(s):  
Yongchao Zhu ◽  
Tingye Tao ◽  
Jiangyang Li ◽  
Kegen Yu ◽  
Lei Wang ◽  
...  

The knowledge of Arctic Sea ice coverage is of particular importance in studies of climate change. This study develops a new sea ice classification approach based on machine learning (ML) classifiers through analyzing spaceborne GNSS-R features derived from the TechDemoSat-1 (TDS-1) data collected over open water (OW), first-year ice (FYI), and multi-year ice (MYI). A total of eight features extracted from GNSS-R observables collected in five months are applied to classify OW, FYI, and MYI using the ML classifiers of random forest (RF) and support vector machine (SVM) in a two-step strategy. Firstly, randomly selected 30% of samples of the whole dataset are used as a training set to build classifiers for discriminating OW from sea ice. The performance is evaluated using the remaining 70% of samples through validating with the sea ice type from the Special Sensor Microwave Imager Sounder (SSMIS) data provided by the Ocean and Sea Ice Satellite Application Facility (OSISAF). The overall accuracy of RF and SVM classifiers are 98.83% and 98.60% respectively for distinguishing OW from sea ice. Then, samples of sea ice, including FYI and MYI, are randomly split into training and test dataset. The features of the training set are used as input variables to train the FYI-MYI classifiers, which achieve an overall accuracy of 84.82% and 71.71% respectively by RF and SVM classifiers. Finally, the features in every month are used as training and testing set in turn to cross-validate the performance of the proposed classifier. The results indicate the strong sensitivity of GNSS signals to sea ice types and the great potential of ML classifiers for GNSS-R applications.


2021 ◽  
Vol 9 (11) ◽  
pp. 1241
Author(s):  
Yu Lu ◽  
Zhuhao Gu ◽  
Shewen Liu ◽  
Chunxiao Wu ◽  
Wu Shao ◽  
...  

The Energy Efficiency Design Index (EEDI) has been applied to ship carbon emission standards since 2013, ice ships subject to the Finnish Swedish Ice Class Rules (FSICR) also need to meet the requirements of EEDI. In this study, the engine power requirements by EEDI at different stages for the considered ice class ships with different ice classes (1C, 1B, 1A, 1A Super) are compared with engine power requirements obtained from the resistance calculated by FSICR or Lindqvist method. Three different bow shapes for the considered ice class ships and different pack ice coverage are studied. The results from FSICR or Lindqvist formula show that 1A Super ice classes for all considered bow shapes cannot meet the requirement by EEDI at Phase 2 and 3; For 1B and 1A class, some bow shapes can meet the EEDI requirement for all stages, but some cannot; For 1C class, all bow shapes can meet the EEDI requirements for all stages. The ship main engine power requirements under different pack ice concentration are studied and compared to EEDI requirements.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yu-Min Chou ◽  
Xiaodong Jiang ◽  
Li Lo ◽  
Liang-Chi Wang ◽  
Teh-Quei Lee ◽  
...  

The Okhotsk Sea, which connects the high latitude Asian continent and the North Pacific, plays an important role in modern and past climate changes due to seasonal sea ice coverage and as a precursor of the North Pacific Intermediate Water. The long-term glacial-interglacial changes of sea ice coverage and its impacts on terrigenous transport and surface primary productivity in the Okhotsk Sea remain, however, not well constrained. Base on the paleomagnetic, rock magnetic, micropaleontological (diatom), and geochemical studies of the marine sediment core MD01-2414 (53°11.77′N, 149°34.80′E, water depth: 1,123 m) taken in the central Okhotsk Sea, we reconstruct the terrigenous sediment transport and paleoceanographic variations during the past 1550 thousand years (kyr). Seventeen geomagnetic excursions are identified from the paleomagnetic directional record. Close to the bottom of the core, an excursion was observed, which is proposed to be the Gilsa event ∼1550 thousand years ago (ka). During glacial intervals, our records reveal a wide extension of sea ice coverage and low marine productivity. We observed ice-rafted debris from mountain icebergs composed of coarse and high magnetic terrigenous detritus which were derived from the Kamchatka Peninsula to the central Okhotsk basin. Still during glacial intervals, the initiation (i.e., at ∼900 ka) of the Mid-Pleistocene Transition marks the changes to even lower marine productivity, suggesting that sea-ice coverage became larger during the last 900 ka. During interglacial intervals, the central Okhotsk Sea was either devoid of sea-ice or the ice was at best seasonal; resulting in high marine productivity. The weaker formation of Okhotsk Sea Intermediate Water, lower ventilation, and microbial degradation of organic matter depleted the oxygen concentration in the bottom water and created a reduced environment condition in the sea basin. The freshwater supplied by snow or glacier melting from Siberia and Kamchatka delivered fine grain sediments to the Okhotsk Sea. During the stronger interglacial intervals after the Mid-Brunhes Transition (i.e., Marine Isotope Stages 1, 5e, 9, and 11), strong freshwater discharges from Amur River drainage area are in association with intensified East Asian Summer Monsoon. This process may have enhanced the input of fine-grained terrigenous sediments to the central Okhotsk Sea.


Author(s):  
Miguel Motas ◽  
Silvia Jerez ◽  
Marta Esteban ◽  
Francisco Valera ◽  
José Javier Cuervo ◽  
...  

Polar regions, symbols of wilderness, have been identified as potential sinks of mercury coming from natural and anthropogenic sources at lower latitudes. Changes in ice coverage currently occurring in some areas such as the Antarctic Peninsula could enhance these phenomena and their impacts on local biota. As long-lived species at the top of food chains, seabirds are particularly sensitive to this highly toxic metal with the capacity to be biomagnified. Specifically, their feathers can be useful for Hg monitoring since they mainly accumulate its most toxic and persistent form, methyl-Hg. To that end, feathers of gentoo (Pygoscelis papua), chinstrap (P. antarcticus), and Adélie penguins (P. adeliae) (n = 108) were collected by passive sampling in seven different locations throughout the Antarctic Peninsula area and analyzed by ICP-MS after microwave-digestion. More than 93% of the samples showed detectable Hg levels (range: 6.3–12,529.8 ng g−1 dry weight), and the highest ones were found in the feathers of chinstrap penguins from King George Island. Hg bioconcentration and biomagnification seem to be occurring in the Antarctic food web, giving rise to high but non-toxic Hg levels in penguins, similar to those previously found in Arctic seabirds.


2021 ◽  
Author(s):  
Jacob Jones ◽  
Karen Kohfeld ◽  
Helen Bostock ◽  
Xavier Crosta ◽  
Melanie Liston ◽  
...  

Abstract. Sea ice expansion in the Southern Ocean is believed to have contributed to glacial-interglacial atmospheric CO2 variability by inhibiting air-sea gas exchange and influencing the ocean’s meridional overturning circulation. However, limited data on past sea ice coverage over the last 140 ka (a complete glacial cycle) have hindered our ability to link sea ice expansion to oceanic processes that affect atmospheric CO2 concentration. Assessments of past sea ice coverage using diatom assemblages have primarily focused on the Last Glacial Maximum (~21 ka) to Holocene, with few quantitative reconstructions extending to the onset of glacial Termination II (~135 ka). Here we provide new estimates of winter sea ice concentrations (wSIC) and summer sea surface temperatures (sSSTs) for a full glacial-interglacial cycle from the southwestern Pacific sector of the Southern Ocean using fossil diatom assemblages from deep-sea core TAN1302-96 (59.09° S, 157.05° E, water depth 3099 m). We find that winter sea ice was consolidated over the core site during the latter part of the penultimate glaciation, Marine Isotope Stage (MIS) 6 (from at least 140 to 134 ka), when sSSTs were between ~1 and 1.5 °C. The winter sea ice edge then retreated rapidly as sSSTs increased during the transition into the Last Interglacial Period (MIS 5e), reaching ~4.5 °C by 125 ka. As the Earth entered the early glacial stages, sSSTs began to decline around 112 ka, but winter sea ice largely remained absent until ~65 ka during MIS 4, when it was sporadically present but unconsolidated (< 40 % wSIC). WSIC and sSSTs reached their maximum concentration and coolest values by 24.5 ka, just prior to the Last Glacial Maximum. Winter sea ice remained absent throughout the Holocene, while SSSTs briefly exceeded modern values, reaching ~5 °C by 11.4 ka, before decreasing to ~4 °C and stabilizing. The absence of sea ice coverage over the core site during the early glacial period suggests that sea ice may not have been a major contributor to CO2 drawdown at this time. During MIS 5d, we observe a weakening of meridional SST gradients between 42° to 59° S throughout the region, which may have contributed to early reductions in atmospheric CO2 concentrations through its impact on air-sea gas exchange. Sea ice expansion during MIS 4, however, coincides with observed reductions in Antarctic Intermediate Water production and subduction, suggesting that sea ice may have influenced intermediate ocean circulation changes.


Sign in / Sign up

Export Citation Format

Share Document