scholarly journals Locations and depths of sites used in coral disease mapping from the Caribbean in 2012 (Contagious coral diseases project)

Author(s):  
Robert van Woesik
2016 ◽  
Vol 371 (1689) ◽  
pp. 20150205 ◽  
Author(s):  
Kathryn P. Sutherland ◽  
Brett Berry ◽  
Andrew Park ◽  
Dustin W. Kemp ◽  
Keri M. Kemp ◽  
...  

We propose ‘the moving target hypothesis’ to describe the aetiology of a contemporary coral disease that differs from that of its historical disease state. Hitting the target with coral disease aetiology is a complex pursuit that requires understanding of host and environment, and may lack a single pathogen solution. White pox disease (WPX) affects the Caribbean coral Acropora palmata . Acroporid serratiosis is a form of WPX for which the bacterial pathogen ( Serratia marcescens ) has been established. We used long-term (1994–2014) photographic monitoring to evaluate historical and contemporary epizootiology and aetiology of WPX affecting A. palmata at eight reefs in the Florida Keys. Ranges of WPX prevalence over time (0–71.4%) were comparable for the duration of the 20-year study. Whole colony mortality and disease severity were high in historical (1994–2004), and low in contemporary (2008–2014), outbreaks of WPX. Acroporid serratiosis was diagnosed for some historical (1999, 2003) and contemporary (2012, 2013) outbreaks, but this form of WPX was not confirmed for all WPX cases. Our results serve as a context for considering aetiology as a moving target for WPX and other coral diseases for which pathogens are established and/or candidate pathogens are identified. Coral aetiology investigations completed to date suggest that changes in pathogen, host and/or environment alter the disease state and complicate diagnosis.


2020 ◽  
Vol 141 ◽  
pp. 79-89
Author(s):  
MM Dennis ◽  
AAMJ Becker ◽  
MA Freeman

Disease is contributing to the decline of coral reefs globally, but the cause and pathogenesis of most coral diseases are poorly understood. Using Gorgonia ventalina and G. flabellum as a model for coral disease diagnosis, we histologically and microbiologically examined 45 biopsies of lesions resembling Gorgonia multifocal purple spots (MFPS) with the aim of forming a comprehensive case definition based on gross and microscopic morphologic descriptions and associated etiologies. Macroscopically, all lesions were small circular areas of purple pigmentation. Gross morphologies included pigmentation only (4/45, 9%), or pigmentation with branchlet expansion and fusion (19/45, 22%), sessile masses (17/45, 38%), or hard nodules (5/45, 9%). Histological morphologic diagnoses included amoebocyte encapsulation (9/45, 20%), coenenchymal amoebocytosis (6/45, 13%), melanin (17/45, 38%), and gorgonin deposition (13/45, 29%). Sixty-four percent of instances of fungi and 86% of labyrinthulomycetes were localized to grossly normal portions of the biopsy, whereas barnacles were only within lesions, and 87% of instances of algae and 82% of cyanobacteria were within lesioned area of the biopsy. Penicillium (n = 12) was the predominant genus of fungi isolated from biopsies. Barnacles were identified as Conopea sp. using molecular techniques. The pathology and etiology underlying MFPS lesions are diverse, consistent with a highly nonspecific lesion pattern rather than a specific disease. This study demonstrates the importance of microscopic examination of tissues for accurate classification of coral diseases and lesion patterns.


2014 ◽  
Vol 281 (1788) ◽  
pp. 20140094 ◽  
Author(s):  
M. J. Sweet ◽  
A. Croquer ◽  
J. C. Bythell

Coral diseases have been increasingly reported over the past few decades and are a major contributor to coral decline worldwide. The Caribbean, in particular, has been noted as a hotspot for coral disease, and the aptly named white syndromes have caused the decline of the dominant reef building corals throughout their range. White band disease (WBD) has been implicated in the dramatic loss of Acropora cervicornis and Acropora palmata since the 1970s, resulting in both species being listed as critically endangered on the International Union for Conservation of Nature Red list. The causal agent of WBD remains unknown, although recent studies based on challenge experiments with filtrate from infected hosts concluded that the disease is probably caused by bacteria. Here, we report an experiment using four different antibiotic treatments, targeting different members of the disease-associated microbial community. Two antibiotics, ampicillin and paromomycin, arrested the disease completely, and by comparing with community shifts brought about by treatments that did not arrest the disease, we have identified the likely candidate causal agent or agents of WBD. Our interpretation of the experimental treatments is that one or a combination of up to three specific bacterial types, detected consistently in diseased corals but not detectable in healthy corals, are likely causal agents of WBD. In addition, a histophagous ciliate ( Philaster lucinda ) identical to that found consistently in association with white syndrome in Indo-Pacific acroporas was also consistently detected in all WBD samples and absent in healthy coral. Treatment with metronidazole reduced it to below detection limits, but did not arrest the disease. However, the microscopic disease signs changed, suggesting a secondary role in disease causation for this ciliate. In future studies to identify a causal agent of WBD via tests of Henle–Koch's postulates, it will be vital to experimentally control for populations of the other potential pathogens identified in this study.


2021 ◽  
Author(s):  
Lorenzo Alvarez-Filip ◽  
F. González-Barrios ◽  
Esmeralda Pérez-Cervantes ◽  
Ana Molina-Hernandez ◽  
Nuria Estrada-Saldívar

Abstract Diseases are major drivers of the deterioration of coral reefs, linked to major declines in coral abundance, reef functionality, and reef-related ecosystems services1-3. An outbreak of a new disease is currently rampaging through the populations of the remaining reef-building corals across the Caribbean region. The outbreak was first reported in Florida in 2014 and reached the northern Mesoamerican reef by summer 2018, where it spread across the ~ 450-km reef system only in a few months4. Rapid infection was generalized across all sites and mortality rates ranged from 94% to < 10% among the 21 afflicted coral species. This single event further modified the coral communities across the region by increasing the relative dominance of weedy corals and reducing reef functionality, both in terms of functional diversity and calcium carbonate production. This emergent disease is likely to become the most lethal disturbance ever recorded in the Caribbean, and it will likely result in the onset of a new functional regime where key reef-building and complex branching acroporids (a genus apparently unaffected) will once again become conspicuous structural features in reef systems with yet even lower levels of physical functionality.


2018 ◽  
Vol 23 (3) ◽  
pp. 137
Author(s):  
Ratna Diyah Palupi ◽  
Rahmadani Rahmadani ◽  
Ira Ira

Diseases of coral reef organisms have become a global threat to coral reefs and a major cause of reef deterioration. The presence of coral diseases influence marine resources productivity that interact with coral reefs. The purpose of this research is to identify coral disease types and prevalence which include coral health compromiser. Data collection was done by using 40 m2 belt transects at three observation stations. The result showed that the White Syndrome (WS), Bleaching, Ulcerative White Spot (UWS), Skeleton Eroding Band (SEB), White Patch (WP), and Non Focal Bleaching were found at research sites, while the coral health compromisers were Sediment damage, fish bite, invertebrate galls, flatworm infestation, and pigmentation response. In addition disease of White Syndrome (WS), Bleaching, and Ulcerative White Spot (UWS) were the main disease with prevalence of disease is approximately 4%, while the others were lower than 1%. Overall the prevalence of diseases (14,52%) is higher than compromise health (13,98%). A total of 186 coral colonies observed with 27 colonies were affected by diseases. Meanwhile, the waters quality (salinity, pH, and nitrate) were below the threshold quality standards for marine aquatic animal and not supported of coral organism was presume organisms against pathogens bacterial. Although the prevalence of coral disease is still in normal condition but the decrease of water quality can lead the risk. Good management is required from local government to improve the water quality especially from terrestrial impact.


2020 ◽  
Vol 7 ◽  
Author(s):  
Austin Greene ◽  
Megan J. Donahue ◽  
Jamie M. Caldwell ◽  
Scott F. Heron ◽  
Erick Geiger ◽  
...  

Coral diseases contribute to the decline of reef communities, but factors that lead to disease are difficult to detect. In the present study, we develop a multi-species model of colony-scale risk for the class of coral diseases referred to as White Syndromes, investigating the role of current or past conditions, including both environmental stressors and biological drivers at the colony and community scales. Investigating 7 years of coral survey data at five sites in Guam we identify multiple environmental and ecological associations with White Syndrome, including a negative relationship between short-term heat stress and White Syndrome occurrence, and strong evidence of increasing size-dependent White Syndrome risk across coral species. Our findings result in a generalized model used to predict colony-scale White Syndrome risk for multiple species, highlighting the value of long-term monitoring efforts to detect drivers of coral disease.


2019 ◽  
Vol 286 (1912) ◽  
pp. 20191718 ◽  
Author(s):  
Allison M. Tracy ◽  
Madeline L. Pielmeier ◽  
Reyn M. Yoshioka ◽  
Scott F. Heron ◽  
C. Drew Harvell

Outbreaks of marine infectious diseases have caused widespread mass mortalities, but the lack of baseline data has precluded evaluating whether disease is increasing or decreasing in the ocean. We use an established literature proxy method from Ward and Lafferty (Ward and Lafferty 2004 PLoS Biology 2 , e120 ( doi:10.1371/journal.pbio.0020120 )) to analyse a 44-year global record of normalized disease reports from 1970 to 2013. Major marine hosts are combined into nine taxonomic groups, from seagrasses to marine mammals, to assess disease swings, defined as positive or negative multi-decadal shifts in disease reports across related hosts. Normalized disease reports increased significantly between 1970 and 2013 in corals and urchins, indicating positive disease swings in these environmentally sensitive ectotherms. Coral disease reports in the Caribbean correlated with increasing temperature anomalies, supporting the hypothesis that warming oceans drive infectious coral diseases. Meanwhile, disease risk may also decrease in a changing ocean. Disease reports decreased significantly in fishes and elasmobranchs, which have experienced steep human-induced population declines and diminishing population density that, while concerning, may reduce disease. The increases and decreases in disease reports across the 44-year record transcend short-term fluctuations and regional variation. Our results show that long-term changes in disease reports coincide with recent decades of widespread environmental change in the ocean.


Coral Reefs ◽  
2015 ◽  
Vol 34 (4) ◽  
pp. 1179-1188 ◽  
Author(s):  
E. Clemens ◽  
M. E. Brandt

Sign in / Sign up

Export Citation Format

Share Document