scholarly journals GENERAL QUASILINEAR PROBLEMS INVOLVING \(p(x)\)-LAPLACIAN WITH ROBIN BOUNDARY CONDITION

2020 ◽  
Vol 6 (1) ◽  
pp. 30
Author(s):  
Hassan Belaouidel ◽  
Anass Ourraoui ◽  
Najib Tsouli

This paper deals with the existence and multiplicity of solutions for a class of quasilinear problems involving \(p(x)\)-Laplace type equation, namely $$\left\{\begin{array}{lll}-\mathrm{div}\, (a(| \nabla u|^{p(x)})| \nabla u|^{p(x)-2} \nabla u)= \lambda f(x,u)&\text{in}&\Omega,\\n\cdot a(| \nabla u|^{p(x)})| \nabla u|^{p(x)-2} \nabla u +b(x)|u|^{p(x)-2}u=g(x,u) &\text{on}&\partial\Omega.\end{array}\right.$$ Our technical approach is based on variational methods, especially, the mountain pass theorem and the symmetric mountain pass theorem.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Qiongfen Zhang

This paper is concerned with the existence and multiplicity of fast homoclinic solutions for a class of damped vibration problems with impulsive effects. Some new results are obtained under more relaxed conditions by using Mountain Pass Theorem and Symmetric Mountain Pass Theorem in critical point theory. The results obtained in this paper generalize and improve some existing works in the literature.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Qiongfen Zhang ◽  
Yuan Li

This paper is concerned with the following nonlinear second-order nonautonomous problem:ü(t)+q(t)u̇(t)-∇K(t,u(t))+∇W(t,u(t))=0, wheret∈R,u∈RN, andK,W∈C1(R×RN,R)are not periodic intandq:R→Ris a continuous function andQ(t)=∫0t‍q(s)dswithlim|t|→+∞⁡Q(t)=+∞. The existence and multiplicity of fast homoclinic solutions are established by using Mountain Pass Theorem and Symmetric Mountain Pass Theorem in critical point theory.


2012 ◽  
Vol 55 (1) ◽  
pp. 181-195 ◽  
Author(s):  
Sihua Liang ◽  
Jihui Zhang

AbstractWe consider a class of critical quasilinear problemswhere 0 ∈ Ω ⊂ ℝN, N ≥ 3, is a bounded domain and 1 < p < N, a < N/p, a ≤ b < a + 1, λ is a positive parameter, 0 ≤ μ < $\bar{\mu}$ ≡ ((N − p)/p − a)p, q = q*(a, b) ≡ Np/[N − pd] and d ≡ a+1 − b. Infinitely many small solutions are obtained by using a version of the symmetric Mountain Pass Theorem and a variant of the concentration-compactness principle. We deal with a problem that extends some results involving singularities not only in the nonlinearities but also in the operator.


2021 ◽  
Vol 13 (2) ◽  
pp. 321-335
Author(s):  
Hassan Belaouidel ◽  
Anass Ourraoui ◽  
Najib Tsouli

Abstract This paper is concerned with the existence and multiplicity of solutions for p(x)-Laplacian equations with Robin boundary condition. Our technical approach is based on variational methods.


2014 ◽  
Vol 32 (2) ◽  
pp. 83 ◽  
Author(s):  
Mohammed Massar ◽  
EL Miloud Hssini ◽  
Najib Tsouli

This paper studies the existence and multiplicity of weak solutions for the following elliptic problem\\$\Delta(\rho|\Delta u|^{p-2}\Delta u)=\lambda m(x)|u|^{p-2}u+f(x,u)+h(x)$ in $\Omega,$\\$u=\Delta u=0$ on $\partial\Omega.$By using Ekeland's variationalprinciple, Mountain pass theorem and saddle point theorem, theexistence and multiplicity of weak solutions are established.


2018 ◽  
Vol 61 (4) ◽  
pp. 943-959 ◽  
Author(s):  
Leszek Gasiński ◽  
Nikolaos S. Papageorgiou

AbstractWe consider a nonlinear Robin problem driven by a non-homogeneous differential operator plus an indefinite potential term. The reaction function is Carathéodory with arbitrary growth near±∞. We assume that it is odd and exhibits a concave term near zero. Using a variant of the symmetric mountain pass theorem, we establish the existence of a sequence of distinct nodal solutions which converge to zero.


2015 ◽  
Vol 4 (1) ◽  
pp. 59-72 ◽  
Author(s):  
Ziheng Zhang ◽  
Rong Yuan

AbstractIn this paper we are concerned with the existence of infinitely-many solutions for fractional Hamiltonian systems of the form ${\,}_tD^{\alpha }_{\infty }(_{-\infty }D^{\alpha }_{t}u(t))+L(t)u(t)=\nabla W(t,u(t))$, where ${\alpha \in (\frac{1}{2},1)}$, ${t\in \mathbb {R}}$, ${u\in \mathbb {R}^n}$, ${L\in C(\mathbb {R},\mathbb {R}^{n^2})}$ is a symmetric and positive definite matrix for all ${t\in \mathbb {R}}$, ${W\in C^1(\mathbb {R}\times \mathbb {R}^n,\mathbb {R})}$ and ${\nabla W(t,u)}$ is the gradient of ${W(t,u)}$ at u. The novelty of this paper is that, assuming L(t) is bounded in the sense that there are constants ${0&lt;\tau _1&lt;\tau _2&lt; \infty }$ such that ${\tau _1 |u|^2\le (L(t)u,u)\le \tau _2 |u|^2}$ for all ${(t,u)\in \mathbb {R}\times \mathbb {R}^n}$ and ${W(t,u)}$ is of the form ${({a(t)}/({p+1}))|u|^{p+1}}$ such that ${a\in L^{\infty }(\mathbb {R},\mathbb {R})}$ can change its sign and ${0&lt;p&lt;1}$ is a constant, we show that the above fractional Hamiltonian systems possess infinitely-many solutions. The proof is based on the symmetric mountain pass theorem. Recent results in the literature are generalized and significantly improved.


2012 ◽  
Vol 31 (1) ◽  
pp. 179 ◽  
Author(s):  
Abdel Rachid El Amrouss ◽  
Anass Ourraoui

In this paper, we establish the existence of at least three solutions to a boundary problem involving the p(x)-biharmonic operator. Our technical approach is based on theorem obtained by B. Ricceri's variational principale and local mountain pass theorem without (Palais.Smale) condition.


Sign in / Sign up

Export Citation Format

Share Document