Electrolytic Treatment of Synthetic Acid Mine Drainage Containing High Concentrations of Ferric Iron

CIM Journal ◽  
2016 ◽  
Vol 7 (4) ◽  
Author(s):  
B. Vollick ◽  
A. F. Souza ◽  
C. Shamshoom ◽  
P. Maharaj ◽  
D. Bejan ◽  
...  
2021 ◽  
Vol 35 (1) ◽  
pp. 41-50
Author(s):  
Svetlana Bratkova

The formation of acid mine drainage (AMD) is a serious environmental problem in areas with mining and processing industries worldwide. Their generation is associated with chemical and biological processes of oxidation of sulfide minerals, mainly pyrite. Sources of AMD can be deposits of sulfide minerals and coal with a high content of pyrite sulfur, mining waste and some tailings. The impact of AMD on surface and groundwater in mining areas continues for decades after the cessation of extraction. An example of the negative impact of generated acid mine drainage on the state of surface waters is in the region of Madzharovo. Years after the cessation of mining, the waters at the discharge points "Momina Skala", "Harman Kaya" and "Pandak Dere" are characterized by low pH values and high concentrations of iron, copper, zinc, cadmium, lead and manganese.


2013 ◽  
Vol 71 (10) ◽  
pp. 4603-4609 ◽  
Author(s):  
Gyoung-Man Kim ◽  
Dae-Hoon Kim ◽  
Jung-Seock Kang ◽  
Hwanjo Baek

2021 ◽  
Vol 47 (1) ◽  
pp. 1-18
Author(s):  
Keolebogile R. Sebogodi ◽  
Jonas K. Johakimu ◽  
B. Bruce Sithole

Acid mine drainage (AMD) is one of the repercussions that result from earth-moving activities around the sulfide-bearing mineral hosts. The detrimental effects associated with this AMD are driven by its characteristics, which include low pH and high concentrations of sulfate and toxic dissolved metals. Traditionally, the prevention and treatment of AMD are achieved by using technologies that use, amongst other, naturally occurring soils and carbonates. However, the continual use of these materials may eventually lead to their depletion. On the other hand, industrial by-products have been proven to occupying land that could have otherwise been used for profitable businesses. Additionally, the handling and maintenance of landfills are costly. In this current trend of a circular economy that is driven by industrial symbiosis, scientists are concerned with valorizing industrial by-products. One such by-product is the green liquor dregs (GLD) from Kraft mills. The neutralizing and geotechnical properties of these wastes have prompted the research pioneers to seek their potential use in handling the challenges associated with AMD. In this review, the formation AMD, trends in technologies for treatment and prevention of AMD are critically analyzed. This includes the feasibility of using GLD as an alternative, promising sustainable material.


2020 ◽  
Vol 39 (4) ◽  
pp. 851-858
Author(s):  
Marina Isabel Vianna de Oliveira Ribeiro ◽  
Juliana Kawanishi Braga ◽  
Renata Piacentini Rodriguez ◽  
Giselle Patricia Sancinetti

1999 ◽  
Vol 18 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Harry R. Diz ◽  
John T. Novak ◽  
J. Donald Rimstidt

ACS Omega ◽  
2020 ◽  
Vol 5 (12) ◽  
pp. 6888-6894 ◽  
Author(s):  
Sudharsanam Abinandan ◽  
Suresh R. Subashchandrabose ◽  
Kadiyala Venkateswarlu ◽  
Mallavarapu Megharaj

Sign in / Sign up

Export Citation Format

Share Document