scholarly journals Formation and characterization of acid mine drainage in the Madzharovo ore field, Southeastern Bulgaria

2021 ◽  
Vol 35 (1) ◽  
pp. 41-50
Author(s):  
Svetlana Bratkova

The formation of acid mine drainage (AMD) is a serious environmental problem in areas with mining and processing industries worldwide. Their generation is associated with chemical and biological processes of oxidation of sulfide minerals, mainly pyrite. Sources of AMD can be deposits of sulfide minerals and coal with a high content of pyrite sulfur, mining waste and some tailings. The impact of AMD on surface and groundwater in mining areas continues for decades after the cessation of extraction. An example of the negative impact of generated acid mine drainage on the state of surface waters is in the region of Madzharovo. Years after the cessation of mining, the waters at the discharge points "Momina Skala", "Harman Kaya" and "Pandak Dere" are characterized by low pH values and high concentrations of iron, copper, zinc, cadmium, lead and manganese.

2012 ◽  
Vol 36 (2) ◽  
pp. 671-679 ◽  
Author(s):  
Igor Rodrigues de Assis ◽  
Luiz Eduardo Dias ◽  
Emerson Silva Ribeiro Jr ◽  
Walter Antônio Pereira Abrahão ◽  
Jaime Wilson Vargas de Mello ◽  
...  

Acid mine drainage (AMD) is an environmental concern due to the risk of element mobilization, including toxic elements, and inclusion in the food chain. In this study, three cover layers were tested to minimize As, Fe and S mobilization from a substrate from former gold mining, containing pyrite and arsenopyrite. For this purpose, different layers (capillary break, sealant and cover layer) above the substrate and the induction of a geochemical barrier (GB) were used to provide suitable conditions for adsorption and co-precipitation of the mobilized As. Thirteen treatments were established to evaluate the leaching of As, Fe and S from a substrate in lysimeters. The pH, As, Fe, S, Na, and K concentrations and total volume of the leachates were determined. Mineralogical analyses were realized in the substrate at the end of the experimental period. Lowest amounts of As, Fe and S (average values of 5.47, 48.59 and 132.89 g/lysimeter) were leached in the treatments that received Na and K to induce GB formation. Mineralogical analyses indicated jarosite formation in the control treatment and in treatments that received Na and K salts. However, the jarosite amounts in these treatments were higher than in the control, suggesting that these salts accelerated the GB formation. High amounts of As, Fe and S (average values of 11.7, 103.94 and 201.13 g/lysimeter) were observed in the leachate from treatments without capillary break layer. The formation of geochemical barrier and the use of different layers over the sulfide substrate proved to be efficient techniques to decrease As, Fe and S mobilization and mitigate the impact of acid mine drainage.


2021 ◽  
Author(s):  
Ilona Sekudewicz ◽  
Michał Gąsiorowski ◽  
Šárka Matoušková ◽  
Jan Rohovec ◽  
Karolina Kaucha

2021 ◽  
Vol 47 (1) ◽  
pp. 1-18
Author(s):  
Keolebogile R. Sebogodi ◽  
Jonas K. Johakimu ◽  
B. Bruce Sithole

Acid mine drainage (AMD) is one of the repercussions that result from earth-moving activities around the sulfide-bearing mineral hosts. The detrimental effects associated with this AMD are driven by its characteristics, which include low pH and high concentrations of sulfate and toxic dissolved metals. Traditionally, the prevention and treatment of AMD are achieved by using technologies that use, amongst other, naturally occurring soils and carbonates. However, the continual use of these materials may eventually lead to their depletion. On the other hand, industrial by-products have been proven to occupying land that could have otherwise been used for profitable businesses. Additionally, the handling and maintenance of landfills are costly. In this current trend of a circular economy that is driven by industrial symbiosis, scientists are concerned with valorizing industrial by-products. One such by-product is the green liquor dregs (GLD) from Kraft mills. The neutralizing and geotechnical properties of these wastes have prompted the research pioneers to seek their potential use in handling the challenges associated with AMD. In this review, the formation AMD, trends in technologies for treatment and prevention of AMD are critically analyzed. This includes the feasibility of using GLD as an alternative, promising sustainable material.


2021 ◽  
Vol 5 ◽  
Author(s):  
Rabelani Munyai ◽  
Henry Joseph Oduor Ogola ◽  
David Mxolisi Modise

Environmental degradation related to mining-generated acid mine drainage (AMD) is a major global concern, contaminating surface and groundwater sources, including agricultural land. In the last two decades, many developing countries are expanding agricultural productivity in mine-impacted soils to meet food demand for their rapidly growing population. Further, the practice of AMD water (treated or untreated) irrigated agriculture is on the increase, particularly in water-stressed nations around the world. For sustainable agricultural production systems, optimal microbial diversity, and functioning is critical for soil health and plant productivity. Thus, this review presents up-to-date knowledge on the microbial structure and functional dynamics of AMD habitats and AMD-impacted agricultural soils. The long-term effects of AMD water such as soil acidification, heavy metals (HM), iron and sulfate pollution, greatly reduces microbial biomass, richness, and diversity, impairing soil health plant growth and productivity, and impacts food safety negatively. Despite these drawbacks, AMD-impacted habitats are unique ecological niches for novel acidophilic, HM, and sulfate-adapted microbial phylotypes that might be beneficial to optimal plant growth and productivity and bioremediation of polluted agricultural soils. This review has also highlighted the impact active and passive treatment technologies on AMD microbial diversity, further extending the discussion on the interrelated microbial diversity, and beneficial functions such as metal bioremediation, acidity neutralization, symbiotic rhizomicrobiome assembly, and plant growth promotion, sulfates/iron reduction, and biogeochemical N and C recycling under AMD-impacted environment. The significance of sulfur-reducing bacteria (SRB), iron-oxidizing bacteria (FeOB), and plant growth promoting rhizobacteria (PGPRs) as key players in many passive and active systems dedicated to bioremediation and microbe-assisted phytoremediation is also elucidated and discussed. Finally, new perspectives on the need for future studies, integrating meta-omics and process engineering on AMD-impacted microbiomes, key to designing and optimizing of robust active and passive bioremediation of AMD-water before application to agricultural production is proposed.


2021 ◽  
Vol 882 (1) ◽  
pp. 012064
Author(s):  
Jarwinda ◽  
A Badhurahman ◽  
G J Kusuma ◽  
R S Gautama

Abstract Coal mining activities, especially overburden material dumping can cause a negative impact into the environment, i.e., acid mine drainage, Acid mine drainage is characterized as low pH water with high sulphate and metal content produced from sulphidic-bearing overburden material with oxygen and water. In unsaturated condition, both of gaseous and water phases exist, acid mine drainage is generated. This study aims to characterize and model the water content in unsaturated condition and diffusion of oxygen of overburden material using the Hydrus 1-D software in a laboratory-scaled column. Laboratory-scaled column is initially filled with 75-cm height of dry overburden material and subjected into 5-cm constant head water level at the top of the column with free-flow condition at the bottom of column. The modelling result shows the water content of overburden material varies within depth and time elapsed and is saturated between 32400 minutes and 36000 minutes after initial wetting. Diffusivity of oxygen is linearly correlated with the water content of the overburden material at any given time and depth that varies between 1.34 × 10−7 m2/s and 8.80 × 10−12 m2/s. Water content and diffusivity of oxygen is expected to affect the generation of acid mine drainage in the overburden material.


Sign in / Sign up

Export Citation Format

Share Document