scholarly journals EECDA: Energy Efficient Clustering and Data Aggregation Protocol for Heterogeneous Wireless Sensor Networks

Author(s):  
Dilip Kumar ◽  
Trilok C. Aseri ◽  
R.B. Patel

In recent years, energy efficiency and data gathering is a major concern in many applications of Wireless Sensor Networks (WSNs). One of the important issues in WSNs is how to save the energy consumption for prolonging the network lifetime. For this purpose, many novel innovative techniques are required to improve the energy efficiency and lifetime of the network. In this paper, we propose a novel Energy Efficient Clustering and Data Aggregation (EECDA) protocol for the heterogeneous WSNs which combines the ideas of energy efficient cluster based routing and data aggregation to achieve a better performance in terms of lifetime and stability. EECDA protocol includes a novel cluster head election technique and a path would be selected with maximum sum of energy residues for data transmission instead of the path with minimum energy consumption. Simulation results show that EECDA balances the energy consumption and prolongs the network lifetime by a factor of 51%, 35% and 10% when compared with Low-Energy Adaptive Clustering Hierarchy (LEACH), Energy Efficient Hierarchical Clustering Algorithm (EEHCA) and Effective Data Gathering Algorithm (EDGA), respectively.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Sercan Vançin ◽  
Ebubekir Erdem

Due to the restricted hardware resources of the sensor nodes, modelling and designing energy efficient routing methods to increase the overall network lifetime have become one of the most significant strategies in wireless sensor networks (WSNs). Cluster-based heterogeneous routing protocols, a popular part of routing technology, have proven effective in management of topology, energy consumption, data collection or fusion, reliability, or stability in a distributed sensor network. In this article, an energy efficient three-level heterogeneous clustering method (DEEC) based distributed energy efficient clustering protocol named TBSDEEC (Threshold balanced sampled DEEC) is proposed. Contrary to most other studies, this study considers the effect of the threshold balanced sampled in the energy consumption model. Our model is compared with the DEEC, EDEEC (Enhanced Distributed Energy Efficient Clustering Protocol), and EDDEEC (Enhanced Developed Distributed Energy Efficient Clustering Protocol) using MATLAB as two different scenarios based on quality metrics, including living nodes on the network, network efficiency, energy consumption, number of packets received by base station (BS), and average latency. After, our new method is compared with artificial bee colony optimization (ABCO) algorithm and energy harvesting WSN (EH-WSN) clustering method. Simulation results demonstrate that the proposed model is more efficient than the other protocols and significantly increases the sensor network lifetime.


2015 ◽  
Vol 15 (3) ◽  
pp. 554
Author(s):  
Y. Chalapathi Rao ◽  
Ch. Santhi Rani

<p>Wireless Sensor Networks (WSNs) consist of a large quantity of small and low cost sensor nodes powered by small non rechargeable batteries and furnish with various sensing devices. The cluster-based technique is one of the good perspectives to reduce energy consumption in WSNs. The lifetime of WSNs is maximized by using the uniform cluster location and balancing the network loading between the clusters. We have reviewed various energy efficient schemes apply in WSNs of which we concerted on clustering approach. So, in this paper we have discussed about few existing energy efficient clustering techniques and proposed an Energy Aware Sleep Scheduling Routing (EASSR) scheme for WSN in which some nodes are usually put to sleep to conserve energy, and this helps to prolong the network lifetime. EASSR selects a node as a cluster head if its residual energy is more than system average energy and have low energy consumption rate in existing round. The efforts of this scheme are, increase of network stability period, and minimize loss of sensed data. Performance analysis and compared statistic results show that EASSR has significant improvement over existing methods in terms of energy consumption, network lifetime and data units gathered at BS.</p>


2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Palak Aggarwal ◽  
Santosh Kumar ◽  
Neha Garg ◽  
Sumeshwar Singh

Energy and security are very important issues in Wireless Sensor Networks (WSN) which need to be handled. These issues are interrelated because of limited energy there are some restrictions on implementation of security. Insider packet drop attack is one of the dangerous attacks for wireless sensor network that causes a heavy damage to WSN functionalities by dropping packets. It becomes necessary to identify such attack for secure routing of data in WSN. To detect this attack, trust mechanism has been proven as a successful technique. In this mechanism, each node verifies the trustworthiness of its neighbor node before packet transmission so that packets can only be transmitted to trustworthy nodes. But there is a problem of False Alarm with such trust-aware scheme. False alarm occurs when a good node’s trust value goes down due to natural packet dropping and being eliminated from the routing paths. This wastes network’s resources that further shortens network lifetime. In this paper, we have proposed a system for identification and recovery of false alarms (IRFA) which is the optimization of existing trust based system. But security solution needs to be energy efficient due to scarcity of energy resources in WSN. To provide energy efficiency, we have implemented proposed IRFA system in cluster based environment which detects insider packet drop attackers in an energy efficient manner. We have conducted OMNET++ simulation and results demonstrate that the proposed system performance is better than existing trust-based system in terms of packet delivery rate and energy efficiency which improves network lifetime.


Author(s):  
Nandoori Srikanth ◽  
Muktyala Sivaganga Prasad

<p>Wireless Sensor Networks (WSNs) can extant the individual profits and suppleness with regard to low-power and economical quick deployment for numerous applications. WSNs are widely utilized in medical health care, environmental monitoring, emergencies and remote control areas. Introducing of mobile nodes in clusters is a traditional approach, to assemble the data from sensor nodes and forward to the Base station. Energy efficiency and lifetime improvements are key research areas from past few decades. In this research, to solve the energy limitation to upsurge the network lifetime, Energy efficient trust node based routing protocol is proposed. An experimental validation of framework is focused on Packet Delivery Ratio, network lifetime, throughput, energy consumption and network loss among all other challenges. This protocol assigns some high energy nodes as trusted nodes, and it decides the mobility of data collector.  The energy of mobile nodes, and sensor nodes can save up to a great extent by collecting data from trusted nodes based on their trustworthiness and energy efficiency.  The simulation outcome of our evaluation shows an improvement in all these parameters than existing clustering and Routing algorithms.<strong></strong></p>


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ying Zhou ◽  
Lihua Yang ◽  
Longxiang Yang ◽  
Meng Ni

A novel energy-efficient data gathering scheme that exploits spatial-temporal correlation is proposed for clustered wireless sensor networks in this paper. In the proposed method, dual prediction is used in the intracluster transmission to reduce the temporal redundancy, and hybrid compressed sensing is employed in the intercluster transmission to reduce the spatial redundancy. Moreover, an error threshold selection scheme is presented for the prediction model by optimizing the relationship between the energy consumption and the recovery accuracy, which makes the proposed method well suitable for different application environments. In addition, the transmission energy consumption is derived to verify the efficiency of the proposed method. Simulation results show that the proposed method has higher energy efficiency compared with the existing schemes, and the sink can recover measurements with reasonable accuracy by using the proposed method.


2014 ◽  
Vol 666 ◽  
pp. 322-326
Author(s):  
Yu Yang Peng ◽  
Jae Ho Choi

Energy efficiency is one of the important hot issues in wireless sensor networks. In this paper, a multi-hop scheme based on a cooperative multi-input multi-outputspatial modulation technique is proposed in order to improve energy efficiency in WSN. In this scheme, the sensor nodes are grouped into clusters in order to achieve a multi-input multi-output system; and a simple forwarding transmission scenario is considered so that the intermediate clusters only forward packets originated from the source cluster down to the sink cluster. In order to verify the performance of the proposed system, the bit energy consumption formula is derived and the optimal number of hopsis determined. By qualitative experiments, the obtained results show that the proposed scheme can deliver the data over multiple hops consuming optimal energy consumption per bit.


2011 ◽  
Vol 230-232 ◽  
pp. 283-287
Author(s):  
You Rong Chen ◽  
Tiao Juan Ren ◽  
Zhang Quan Wang ◽  
Yi Feng Ping

To prolong network lifetime, lifetime maximization routing based on genetic algorithm (GALMR) for wireless sensor networks is proposed. Energy consumption model and node transmission probability are used to calculate the total energy consumption of nodes in a data gathering cycle. Then, lifetime maximization routing is formulated as maximization optimization problem. The select, crosss, and mutation operations in genetic algorithm are used to find the optimal network lifetime and node transmission probability. Simulation results show that GALMR algorithm are convergence and can prolong network lifetime. Under certain conditions, GALMR outperforms PEDAP-PA, LET, Sum-w and Ratio-w algorithms.


2016 ◽  
Vol 11 (2) ◽  
pp. 2641-2656
Author(s):  
Basim Abood ◽  
Aliaa Hussien ◽  
Yu Li ◽  
Desheng Wang

The most important consideration in designing protocols for wireless sensor networks is the energy constraint of nodes because in most cases battery recharging is inconvenient or impossible. Therefore, many researches have been done to overcome this demerit. Clustering is one of the main approaches in designing scalable and energy-efficient protocols for wireless sensor networks. The cluster heads take the task of data aggregation and data routing to decrease the amount of communication and this prolongs the network lifetime. LEACH protocol is one of the famous of them. In this paper, we proposed a novel scheme to investigate the cluster, the Fuzzy Logic Cluster Leach Protocol (FUZZY-LEACH), which uses Fuzzy Logic Inference System (FIS) in the cluster process. We demonstrate that using multiple parameters in cluster reduces energy consumption. We compare our technique with the LEACH protocol to show that using a multi parameter FIS enhances the network lifetime significantly. Simulation results demonstrate that the network lifetime achieved by the proposed method could be increased by nearly 28.5% more than that obtained by LEACH protocol in  scenario, and by nearly 26.4% more than that LEACH protocol in  scenario.


2018 ◽  
Vol 19 (1) ◽  
pp. 72-90
Author(s):  
Seyed Mohammad Bagher Musavi Shirazi ◽  
Maryam Sabet ◽  
Mohammad Reza Pajoohan

Wireless sensor networks (WSNs) are a new generation of networks typically consisting of a large number of inexpensive nodes with wireless communications. The main purpose of these networks is to collect information from the environment for further processing. Nodes in the network have been equipped with limited battery lifetime, so energy saving is one of the major issues in WSNs. If we balance the load among cluster heads and prevent having an extra load on just a few nodes in the network, we can reach longer network lifetime. One solution to control energy consumption and balance the load among nodes is to use clustering techniques. In this paper, we propose a new distributed energy-efficient clustering algorithm for data aggregation in wireless sensor networks, called Distributed Clustering for Data Aggregation (DCDA). In our new approach, an optimal transmission tree is constructed among sensor nodes with a new greedy method. Base station (BS) is the root, cluster heads (CHs) and relay nodes are intermediate nodes, and other nodes (cluster member nodes) are the leaves of this transmission tree. DCDA balances load among CHs in intra-cluster and inter-cluster data communications using different cluster sizes. For efficient inter-cluster communications, some relay nodes will transfer data between CHs. Energy consumption, distance to the base station, and cluster heads’ centric metric are three main adjustment parameters for the cluster heads election. Simulation results show that the proposed protocol leads to the reduction of individual sensor nodes’ energy consumption and prolongs network lifetime, in comparison with other known methods. ABSTRAK: Rangkaian sensor wayarles (WSN) adalah rangkaian generasi baru yang terdiri daripada nod-nod murah komunikasi wayarles. Tujuan rangkaian-rangkaian ini adalah bagi mengumpul maklumat sekeliling untuk proses seterusnya. Nod dalam rangkaian ini dilengkapi bateri kurang jangka hayat, jadi simpanan tenaga adalah satu isu besar dalam WSN. Jika beban diimbang antara induk kelompok dan lebihan beban dihalang pada setiap rangkaian iaitu hanya sebilangan kecil nod pada tiap-tiap kelompok,  jangka hayat dapat dipanjangkan pada sesebuah rangkaian. Satu penyelesaian adalah dengan mengawal penggunaan tenaga dan mengimbangi beban antara nod menggunakan teknik berkelompok. Kajian ini mencadangkan kaedah baru pembahagian tenaga berkesan secara algoritma berkelompok bagi pembahagian data dalam WSN, dikenali sebagai Pembahagian Kelompok Kumpulan Data (DCDA). Melalui pendekatan baru ini, pokok transmisi optimum dibina antara nod sensor melalui kaedah baru. Stesen utama (BS) ialah akar, induk kelompok-kelompok (CHs) dan nod penyiar ialah nod perantara, dan nod-nod lain (nod-nod ahli kelompok) ialah daun bagi pokok trasmisi. DCDA mengimbangi beban CHs antara-kelompok dan dalam-kelompok komunikasi data daripada kelompok berbeza saiz. Bagi komunikasi berkesan dalam-kelompok, sebahagian nod penyampai akan memindahkan data antara CHs. Penggunaan tenaga, jarak ke stesen utama dan induk kelompok metrik sentrik adalah tiga parameter pelaras bagi pemilihan induk kelompok. Keputusan simulasi protokol yang dicadang menunjukkan pengurangan penggunaan tenaga pada nod-nod sensor individu dan memanjangkan jangka hayat rangkaian, berbanding kaedah-kaedah lain yang diketahui.


Sign in / Sign up

Export Citation Format

Share Document