Personalizing prophylactic surgery in cancer: current practice and future perspectives from new genome-wide association studies

2011 ◽  
Vol 11 (6) ◽  
pp. 813-816 ◽  
Author(s):  
Odysseas Zoras ◽  
Christos S Katsios ◽  
Dimitrios H Roukos
Author(s):  
Saleh Alseekh ◽  
Dimitrina Kostova ◽  
Mustafa Bulut ◽  
Alisdair R. Fernie

AbstractGWAS involves testing genetic variants across the genomes of many individuals of a population to identify genotype–phenotype association. It was initially developed and has proven highly successful in human disease genetics. In plants genome-wide association studies (GWAS) initially focused on single feature polymorphism and recombination and linkage disequilibrium but has now been embraced by a plethora of different disciplines with several thousand studies being published in model and crop species within the last decade or so. Here we will provide a comprehensive review of these studies providing cases studies on biotic resistance, abiotic tolerance, yield associated traits, and metabolic composition. We also detail current strategies of candidate gene validation as well as the functional study of haplotypes. Furthermore, we provide a critical evaluation of the GWAS strategy and its alternatives as well as future perspectives that are emerging with the emergence of pan-genomic datasets.


2020 ◽  
Author(s):  
L. Garreta ◽  
I. Cerón-Souza ◽  
M.R. Palacio ◽  
P.H. Reyes-Herrera

AbstractSummaryThe Genome-Wide Association Studies (GWAS) are essential to determine the genetic bases of either ecological or economic phenotypic variation across individuals within populations of model and non-model organisms. For this research question, current practice is the replication of the GWAS testing different parameters and models to validate the reproducibility of results. However, straightforward methodologies that manage both replication and tetraploid data are still missing. To solve this problem, we designed the MultiGWAS, a tool that does GWAS for diploid and tetraploid organisms by executing in parallel four software, two for polyploid data (GWASpoly and SHEsis) and two for diploids data (PLINK and TASSEL). MultiGWAS has several advantages. It runs either in the command line or in an interface. It manages different genotype formats, including VCF. It executes both the full and naïve models using several quality filters. Besides, it calculates a score to choose the best gene action model across GWASPoly and TASSEL. Finally, it generates several reports that facilitate the identification of false associations from both the significant and the best-ranked association SNP among the four software. We tested MultiGWAS with tetraploid potato data. The execution demonstrated that the Venn diagram and the other companion reports (i.e., Manhattan and QQ plots, heatmaps for associated SNP profiles, and chord diagrams to trace associated SNP by chromosomes) were useful to identify associated SNP shared among different models and parameters. Therefore, we confirmed that MultiGWAS is a suitable wrapping tool that successfully handles GWAS replication in both diploid and tetraploid [email protected]


Sign in / Sign up

Export Citation Format

Share Document